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Abstract
The use of High Speed Weigh-In-Motion (HS-WIM) towards direct weight enforcement is
growing worldwide. Weighing sensors can be implemented inside the roadway and directly
estimated  the  weight  of  the  moving  vehicle.  Regarding  the  specific  system  in  Wallonia
(Belgium), the class A (according to the COST323) and the class I (according to the E1318-
94) are reached for the trucks T2S3.
However, this accuracy is only obtained for a small number of vehicles, which are filtered by
using an algorithm of selection to filter which vehicles to weigh. The purpose of this paper is
to  present  an algorithm with the capability  of increasing  the number of  selected  vehicles
without decreasing the good accuracy of the raw system. This work aims to compare different
mathematical  estimators  and  choose  the  best  hyper-parameters  by  cross-validation.  We
especially bring up the topic of the accuracy of the HS-WIM for each estimator regarding the
number of needed vehicles to train our model. We conclude that the local regression seems
the more suitable estimator in many aspects, that we describe in the following. Finally, the
ability of the model to be implemented (which are mainly the time and space complexity) in a
electronic device is also discussed.
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1. Introduction

Many issues as a deterioration of the roadway or a lack of safety may arise due to overloaded
vehicles on a highway. Controlling and punishing the drivers is a heavy work because each
vehicle must be weighed off the highway, with the nearest static weighing machine.  This
approach requires a lot of time and only a small number of the vehicles can be weighed.
Nowadays, weighing sensors are able to directly weigh vehicles on the road in order to save
time and control a much bigger number of vehicles. Then, the owner of the vehicle is given a
penalty if the estimated weight is beyond the allowed range. 

In  the  last  few years,  High Speed  Weigh-In-Motion  (HS-WIM) gained  attention  in  civil
engineering.  Indeed,  papers  as  (Jacob,  2016),  (Gadja,  2016),  (Burnos,  2017)  and (Gadja,
2023) described the behavior of the sensors regarding the external conditions as temperature
of the road or the speed of the vehicles. 
Moreover, technical papers as (Jacob, 2000) established the practical protocols for the HS-
WIM  towards  direct  enforcement.  These  papers  give  information  about  the  statistical
background and the procedure to verify the accuracy of a HS-WIM system. They also provide
a classification of the sites according to the quality and the specifications of the pavement.
Because of the general growing enthusiasm for automatic weight enforcement, the COST323
(COST,  1998)   and  the  E1318  (ASTM,  2021)  which  are  devoted  to  the  general
recommendations of a Weigh-In-Motion (WIM) system, tends to become European and U.S.
pre-standard. Some papers as (Antofie, 2019), (Doupal, 2016) and (Marchadour, 2008) are
dedicated to the description of the accuracy that a specific system is able to reach by using the
HS-WIM towards direct enforcement. Besides, papers as (Cebon, 1991), (Stergioulas, 2000)
and recently (Gadja, 2020)  estimate the static forces from the total forces applied by the
vehicles on the road with the used of multiple sensors.

In Wallonia (Belgium), the Walloon Public Service (SPW) and the compagny Sterela start a
partnership to install and calibrate quartz sensors at several places in 2019 in order to face the
problem of  overloading vehicles.  These  sensors  were installed  at  the  same time as  a  re-
foundation of the roadway. They are able to record a lot of information about the vehicles,
such as the lateral position of the wheels on the road, the speed or the weight. The figure 1
shows the magnetics loops, the weighing sensors, the temperature sensors and the sensors of
position represented by the dotted rectangle, the hatched rectangles, the dots and the lines,
respectively.  The reached accuracy of this specific raw system is very high, thanks to the
statistical and physical models designed by Sterela. According to the COST323  (and E1318)
specifications, the system currently belongs to the class A (and class I)  for the trucks T2S3
and to the class B (and class I) for the vans U2.

Whereas  the  hardware  of  Sterela  provides  raw estimations  thanks  to  the  piezoelectricity
equations,  the  dynamical  effect  of  the  high  speed  on  the  axles  typically  leads  to  high
estimation errors for a lot of vehicles. As a consequence, an important selection of vehicles is
needed to obtain a good accuracy in practice, which are detailed in (Antofie, 2019). 
This  selection  consists  of  multiple  conditions  which  must  be  met  in  order  to  give  an
estimation  of  the weight  with high accuracy.  If  this  selection  is  passed for  a  vehicle,  its
validity state is said to be 1 and the estimated weight is accepted, and 0 otherwise. 
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Instead of discarding the unusual vehicles which failed the selection, the purpose of this paper
is to introduce a suitable model which aims to predict the weight with a high precision and
acceptance rate without having to pass a hard selection. 

While  most  of  papers  are  concerned  with  the  description  of  the  accuracy,  much  less
researches are dedicated to the development  of a mathematical  model  to improve it,  or a
processing of the high dimensional data.  For instance,  (Burnos, 2021) and (Burnos, 2020)
proposed  in  Poland  an  algorithm  to  update  parameters  in  the  computation  of  weights
according to the time of the day or the season. This updating method is valuable if some
variables  rapidly  change  and  is  completely  independent  of  the  static  weight,  as  the
temperature in Poland which can vary over a range of dozens of degrees in few hours.

Concerning high parametric  mathematical models,  (Heidari,  2019) proposed auto-encoders
and regressors with feed-forward networks. As expected, these networks outperform the raw
system.  Nevertheless,  they need thousands of  vehicles  to  train  the networks.  In  Belgium,
much less time is dedicated to the creation of a database and this large number of weighing on
a low speed scale is impossible. At first sight, training a high-dimensional model with a large
number  of  parameters  seems  appealing  to  highlight  non-linear  relationships  between  the
features of a single vehicle. Though, these high-parametric methods easily suffer from over-
fitting  and high  sensitivity  which  result  in  bad  accuracy  for  small  or  noisy  training  sets
(Bishop, 2006). 

More sparse models as extended linear regression have been implemented in the case of on-
board WIM in (Kirushanth, 2020). Indeed, combinations and non-linear transformations of
the existing  variables  were performed,  such as  power and multiplications  of  variables,  or
application of log functions. Afterwards, the more important features was selected thanks to a
stepwise feature selection. This procedure is well suited in the case of a data set of moderate
size.  However,  assuming  some  hypothesis  about  the  non-linear  functions  are  sometimes
difficult and leads to less accurate estimations. Moreover, the validation step might highly
depend on the site and had then to be performed at each location. 

Figure 1 – Scheme of the two grids of sensors in the roadway 
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In order to face our problem, the following procedure designed by the SPW in this partnership
aims to model the residual errors made which are not corrected by the sensors. In this case,
the challenging task is having a balance between the accuracy of the weighing and the needed
size of the training set, due to the difficulty of the data collecting. 
Therefore, the first step of this procedure is to handle the high-dimensionality of the data with
a reduction of dimension and then developing a model that takes the reduction into account.

As we will see in the following, some extracted features play a much bigger role than the
other ones for an accurate weight estimation.  For this  reason, we are interested in testing
several estimators as the extended linear regression which is used in (Kirushanth, 2020) and
the local linear regression (Llr) (Cleveland, 1988), that has proven to withstand the curse of
dimensionality  and  widen  the  class  of  functions  that  can  be  approximated.  However,
(Cleveland, 1988) shows accurate forecasts in the case of two or three independent features.
We will show that performing the principal components analysis (PCA) before the local linear
regression outperforms other classical parametric models such as extended linear regression.

The present paper is organized as follows. The first part is the reminder of the mathematical
principle  which  will  be  used  to  create  our  procedure.  It  consists  of  the  definition  of  a
smoother  and  its  application  in  the  local  linear  regression,  the  basics  of  the  principal
components analysis (PCA) and the statement of the relative error enforced by OIML. Then,
the available data sets and their specifications will be presented. Third, we will compare the
learning curves of the parametric models and the Llr. Finally, we discuss the results and the
time and space complexity of the method. 

2. Mathematical Background

2.1. Model and database

Let Y be the vector in ℝNx1 of N reference weights and X the ℝNxD measurement matrix of D
features returned by the HS-WIM. Each column of this matrix refers to a typical feature, such
as the speed or the estimated weight, for example. 
Y is  assumed  to  be  known  thanks  to  a  training  phase  with  regard  to  the  respective
measurement matrix X. We call training phase the period in which we record the measures of
the HS-WIM and the reference weight of the LS-WIM.

Suppose that the data are generated by the model :

yn=f ( xn )+ϵ n (1)

In which  f, xn and εn are respectively a general smooth non-linear function as explained in
(Cleveland, 1988), all the measured features of the nth weighed vehicle and the random error
of measurement with mean µ = 0.

The regression problem is to find the conditional expectation ŷ of the true weight y, given the
new measurement x for a typical vehicle, such that :
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ŷ=E [ y|x ]=F ( x ) (2)

Where F stands for the used model. 

2.2. Principal components analysis (PCA)

The first step of our regression problem is solving the problem of multi-colinearity between
the available features of a vehicle, which are mainly the lateral position of each wheels {Pj}
on the reference lines and the speed of the vehicle v. Though the temperature of the road T has
been proven in (Gadja, 2016) and (Burnos, 2016)  to be a significant factor of influence in the
weight estimation, our collected data does not contain a wide range of temperatures. Then, the
optimized parameters in each model could only give a poor estimation of the real parameters.
Therefore, the temperature will not be considered in what follows, even if such algorithms
presented in (Burnos, 2020) could be implemented in addition to our method. 
We use the PCA to extract new uncorrelated features from the initial features, as explained in
(Bishop, 2006). 

If X is our matrix of measurements, we can see each sample as a vector :

xn=[ xn
1 xn

2 … xn
D ]   (3)

The PCA seeks to find a new representation of the same dataset in which the new features are
uncorrelated. Let Z be this new data matrix such that we compute the new variables as linear
combinations of the initial features:

Z=X V   (4)

Where V is the stacked column vectors for the linear transformation. 
This  matrix  is  computed  with  the  Eigen  Value  Decomposition  (EVD)  applied  to  the
correlation matrix ΣX of X such that:

ΣX=V ɅVT (5)

with :

ΣZ=Ʌ=diag ( ⟨ λi ⟩ i=1
D )   (6)

Therefore, the new correlation matrix Σz (if we assume that the data has been standardized) is
equivalent to Λ which is the diagonal matrix of the variances of the new features. 
After the feature extraction, we ought to select the new features set {zd} which optimizes the
accuracy in cross-validation.
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2.3. Local linear regression (Llr)

In this part, we introduce the model  F that we choose to estimate the true weight from the
features  measured by the HS-WIM. The local  linear  regression has  some key advantages
compared  to  other  parametric  method  as  linear  regression,  which  are  explained  in  the
following. 
Firstly, this method is completely adaptive because of its non-parametric optimization. This
means that any additional step is required to implement the method in a different location. 
Secondly, the Llr has the ability to widen the function to be approximated. Then, applying
non-linear function and the stepwise selection as presented in (Kirushanth, 2020) becomes
unnecessary. This results in an end-user program easier to handle which does not need to be
validated. Instead of computing the weight regarding the features of the vehicle as it is the
case for classical  linear regression, the main idea of the local regression is  predicting the
weight of a vehicle with previously encountered vehicles during the training phase which are
“similar” with the new vehicle. This similarity is computed as follows, with the function w. 

The local linear regression was initially defined with the principle of smoothers introduced in
(Cleveland, 1988) among others in order to smooth time series. 
The local linear regression is based on a scalar product between the vector of β and the vector
of features, extended by the coefficient 1 :

F ( x|X , Y , w , k )=[ 1 x ] β ( x|X ,Y , w , k )   (7)

In our case, k is simply the number of neighbors that are considered for the estimated weight
ŷ of measurement x. As mentioned in (Cleveland, 1988), a possible smoother is the tri-cube
function :

w ( x , xn|k )=max [0 ,(1 −(‖x− xn‖
dmax

k+1 )
3

)
3]   (8)

The model  ought to optimize the value of  b for the new measurement  x,  given  X and  Y
obtained during the training phase, and given a weighting function of neighborhood w with
parameter  k. dk+1

max is the (k+1)th smaller distance between x and the set of measurements
{xn}. 

β ( x|X , Y , w , k )=argminb∑
n=1

N

w ( x , xn|k ) ( yn− ( [1 xn ] . b))2 (9)

It can be shown that this minimization problem is equivalent to solving the following linear
system in which the variables are the parameters in the vector β:
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[~X ' A~X ] β=A~X ' Y (10)

Where the matrix tilde X is the extended matrix X by the vector of ones 1N. A is the diagonal
of the weight between each xn and x :

A=diag (⟨ w ( x , xn )⟩n=1

N ) (11)

Obviously, only k in N equations are used in the linear system due to the weight function w
that is equal to zero for the samples xn for which || x - xn ||2 > dk+1

max  .  .

Some additional  remarks  can be made about  the hyper-parameter  k.  The key point  to  be
understood is that k is not related to the model itself, as the classic parameters do in a linear
regression, but mainly to the number of vehicles we recorded during the training phase. While
parameters are not consistent in different HS-WIM system, the hyper-parameters can be fixed
if they have a similar number of recorded vehicles. 

2.4. Definition of relative error and accuracy 

The  fundamentals  for  the  assessment  of  the  accuracy  are  introduced  according  to  the
COST323  and (Jacob, 2000). 
Let  y be the reference weight  and  ŷ the estimated  weight  computed with a  mathematical
model, which is possibly inaccurate. For each weighed vehicle, we can compute its relative
error of estimation er :

er= ŷ − y
y

(12)

Then, the accuracy of a HS-WIM machine is defined as the probability Π that a single relative
error falls inside the range [-δ,+δ]. More precisely, we seek to find a lower bound π of Π with
risk α, as the true mean of this distribution is unknown.
According to (Jacob, 2000), it is possible to find a lower bound π computed as follows :

Π ≥ π=Ψ ( δ − m
s

−
t ν , 1− α /2

√N )− Ψ (− δ −m
s

−
t ν ,1 −α /2

√ N ) (13)

m and s are the estimated mean and standard deviation, respectively; tν, 1-α/2 and  Ψ are the 
(1-α/2)-quantile  for  the  Student's  t  distribution  with ν  = N-1 degrees  of  freedom and the
Student's t CDF with ν degrees of freedom, respectively. 

According to the specifications of the COST323, we especially aim to achieve the class A(δ =
5%) for the T2S3 and class B(δ = 10%) for the U2, with π = 99.8% and α = 5%. 

We emphasize the need of checking the normality of the relative errors before computing the
confidence levels. To this end, we are going to perform a Shapiro-Wilk test on each set of
relative errors in the next sections.
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2.5. Subset of de-correlated variables for neighborhood

As it was already mentioned, (Cleveland, 1988)  shows good estimations for a small number
of  independent  features.  Though,  we  explained  that  we  have  a  much  bigger  number  of
variables that are not independent. At first sight, we might think that proceeding the PCA on
all  the  dependent  features  and using the  d ones  with the higher  variances  in  the  smooth
function could be a good idea, but it is not the case because increasing the variance between
the  features  does  not  necessarily  lead  to  an  increasing  of  the  correlation  between  these
features and the reference weight. 
Therefore,  two consequences  follow.  Firstly,  considering useless  features  in  the distance
function w gives less importance to the real significant features. Secondly, it would be better
to apply separately the linear tools PCA on the subsets {Wi} and {Pj} and optimizing the
coefficients of this relationship with regard to the reference weights { yn }. 
Therefore,  there  are  two dimensionality  reductions:  d1 and d2,  which are the dimensional
reduction of the subsets {Wi} and {Pj}, respectively. 

To this end, let κd denote the aggregated variance kept from the first d new features, compared
to the total variance:

κd=100 %×
∑l=1

d
λl

∑l=1

D
λl

(14)

We can see the kept variance regarding the dimension reduction d for each subset in the figure
2. We notice that the subset of {Pj} of 10 variables have actually a high dependency and that
only this transformed feature alone explains more than 95% of the total variance on {Pj}.
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Figure 2 – PCA on the subsets of the 20 weights under each wheels and of the 10 wheel
positions

If  we  look  at  the  PCA  coefficients  for  the  subset  {Pj},  we  noticed  that  this  principal
component is the mean of the position of the wheels, zP

1. Now, we can compare the error of
estimation regarding this variable in the figure 3. 

Figure 3 – Error of estimation (%) compared to the first principal component of the
subset {Pj}
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In this figure, we observe that the uncertainty of the error, given the principal component zP
1,

dramatically decreases. We can also notice that this curve is parabola-like but it can be more
complex according to the type of vehicles. While the auto-covariance matrix of  X gives us
information about how the features are related to each other, it does not ensure that the PCA
variables depends on the target value y. To this end, we compute the covariance between each
zw

i and y. The absolute value of these quantities are shown in the figures 4 and 5 for both the
T2S3  and  U2,  respectively.  We  can  observe  that  the  covariance  only  highlights  linear
dependencies  of  few PCA variables  with  y.  For  T2S3  and  U2,  we  observe  that  d1 =  3
explained a great part of y. 
This observation will be compared with the K-Fold cross-validation in the section 5. 

Figure 4 –  Absolute value of covariance between each variable zW
i and y for T2S3
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Figure 5 –  Absolute value of covariance between each variable zW
i and y for U2

For these reasons, we will try a first model inspired from the local regression, but in which we
only use the variable zP

1 in the distance function. So, let {zW
i  } be the PCA variables of the

subsets {Wi}. We are now able to simplify the definition of the local regression as:

F ( ⟨ z i
W ⟩ , z1

P , v|, Z ,Y , k )=[1 ⟨zi
W ⟩ z1

P v ] . β ( z1
P|Z ,Y , w ,k ) (15)

We only use the variable zP
1 for the computation of the neighborhood and afterwards we use a

linear combination of the other variables. This is because the non-linear relationship between
the variables {zW

i} and the target y mostly depends on the value of {zP
j}.  

3. Data collections

In this section we present the data we used to train and test our model. We assess the accuracy
of our model for the gross-weight (GW) of two kinds of vehicles; the trucks with a header of
two singles axles in addition to a trailer that is a group of three axles (T2S3) and vans with
only two single axles (U2). Their maximum permissible weight is usually around 44t and 3.5t
respectively for the T2S3 and the U2. 

The HS-WIM system contains two grids of sensors which independently weigh a vehicle.
Each grid computes the raw estimation of the weight with the mean of all the single weights
measured  by  the  sensors.  The  double  weighing  by  the  grids  is  a  legal  requirement  for
weighing station in order to prevent outliers and abusive penalties. 

In the following results, we are only trying to model the grid 1. The use of only one grid is
important because a future research could seek to predict all types of vehicles with the same
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model, and then from the same grid. The following procedure can obviously be used for the
second grid. 
In what follows, the reference weight is approximated with the weight given by the LS-WIM
since the error given by this scale is small (1%) compared to the error of the HS-WIM. 
The specifications of the low speed scale are depicted in the table 1. 

Table 1 – Raw accuracy of database 1 for the types of vehicles T2S3 and U2

Effective speed 5 km/h

Max 20t

Min 20kg

d 10kg

Class III

Axle max error 4%

Total max error 1%

A massive campaign was achieved from September 2019 to February 2020 to collect data.
The raw accuracy of the system is summarized in the table 2. During this period, vehicles of
concern were deviated from the road and weighed with a high-precision machine (LS-WIM)
after their weighing with the HS-WIM. 

Table 2 – Raw accuracy of database 1 for the types of vehicles T2S3 and U2

GW-T2S3 GW-U2

Number 404 188

m (%) -0.18 -4.71

s (%) 5.08 2.90

The table 3 depicts another database in which the measurements were collected in June and
July 2020, in which all measurements do not come from different vehicles, but from a few
chosen vehicles that passed on the sensors. This database will be interesting because of its
simplicity to carry out. Moreover, it provides us a cheaper training with a lower bound on the
accuracy.  Since  the  table  3  will  only  be  used  as  a  training  data,  we  will  use  as  much
information as possible. Therefore, if we look at the confidence level of both types without
validity state in both tables, we see that the accuracy could be much better in a table compared
to the other one. That is explained by the high dependency between the behavior of a single
vehicle and the pattern of its relative errors. In the table 2, we see that the few tested T2S3
give good results, while the few tested U2 give bad accuracy. 
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Table 3 – Raw accuracy of database 2 for the types of vehicles T2S3 and U2 

GW-T2S3 GW-U2

Number of measurements 167 144

Number of vehicles 2 2

Number of loads 8 6

m (%) 0.85 -6.9

s (%) 1.69 8.31

P-value Shapiro test 4 0

In the table 4, we present the accuracy of the raw system for the massive campaign DB1, after
the  application  of  the  statistical  tools  and  validity  criterion  of  the  original  system.  This
validity criterion is based on conditions which have to be met in order to pass the selection.
We observe that Class A for the T2S3 and the class B for the U2  are obtained in this way.
Then, we notice that high accuracy is obtained, but only the half of the trucks has a valid
weighing.

Table 4 – Raw accuracy of massive campaign with hard validity conditions for the types 
of vehicles T2S3 and U2

GW-T2S3 GW-U2

Number 404 188

Valid ones 180 185

m (%) 0.53 -2.41

s (%) 0.98 2.04

δ (%) 5 10

Πδ (%) 99.99 99.98

Besides the confidence levels and intervals, another more practical criterion for the good fit of
the estimation is the confusion matrix for the classification of penalties. Theses matrices are
shown in tables 5 and 6 for the two types of vehicles. These tables show that a small part of
the vehicles, which have their weight beyond the limit, are given a penalty at the end. This is
because only a few part of the vehicles is considered as valid, and then weighed. However, we
can notice that the raw estimation never gives false positive which is a necessary condition for
the system deployment.
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Table 5 – Confusion matrix for valid T2S3 of the database 1

Estimation penalty

Yes No Total

Real Penalty Yes 16 35 51

No 0 353 353

Total 16 388 404

Table 6 – Confusion matrix for U2 of the database 1

Estimation penalty

Yes No Total

Real Penalty Yes 72 48 120

No 0 68 68

Total 72 116 188

4. Computational complexity

Another significant consideration is the ability of the model to run in small electronic devices.
Then, we analyze in this section the time and the memory space required to run our method. 

Let N ,k,  dw,  dP be the  number of  measurements  available  during the training  phase,  the
number of considered neighbors as introduced in the previous sections, the dimension of the
reduction for the sets {Wi} and {Pj}, respectively. For the computation of the complexities,
there is no need to split  dw and dP because we mainly used the total number of dimensions,
that we will call d, which is define as d = dw + dP + d' where d' is the number of dimensions
that does not belong to one of the both PCA subsets, such as the speed for instance. The only
small difference in the terms of complexities is the computation of the distances, which only
depends on the dimension dP. 
The time and memory complexity of the non-linear regression is analyzed as follows.

Concerning the time consumption, we have two significant steps in the modeling: the search
of neighborhood and the minimization problem (9). For the first step, we ought to compare all
the  distances  between  the  new  measurement  and  each  measurement  from  the  training
database. Sorting can be achieved by the algorithm Quicksort (Hoare, 1962) which has proven
to sort in order O(N log N) for the best and average case, and  O(N2) for the worst case. 
However, we have in our case k << N, so we had better look at k times the minimum of the
distances list. We can reduce the time complexity of this computation to  O (k x  N) in the
average and worst case. 
The second step is the solving of the minimization problem. The computation time mainly
comes from the several matrix multiplications and the solving of the linear system C β = b.
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Such  linear  system  with  Hermitian  matrixC ∈ℝd× d can  be  solved  by  a  Cholesky
decomposition  as  explained  in  (Burnian,  2004).  This  decomposition  is  O(d3)  and  the
calculation is O(d2). 
At the end, the total time complexity is O(k x N+d3) in the worst case, as we typically have 
d << N. 
In  the  next  section,  we are  going to  see  that  d= 3 already  outperforms other  parametric
estimators. However, we must pay attention to the number of considered data points N which
can be possibly large, more than 100 for instance.
Concerning the memory complexity, the critical point is saving a possibly large database for
the training, so the order of space complexity is O(N x d). For instance, we should possibly
store  400 x  3 float numbers in order to predict new weights. The very small hard memory
needed for this storage should be at least equivalent to 5 KB.

5. Results

In this section, we are addressing the problem of comparing the accuracy of the local linear
regression  applied  with  different  hyper-parameters  and  other  parametric  estimators.  We
especially pay attention to the definition of accuracy in this context because of the difficulties
to collect  true weights  on a static  machine.  Therefore,  accuracy is  considered as learning
curves, which are the mean of accuracy with different subsets of training vehicles, with regard
to the size of these sets. The experiments are performed as follows. 

We define a number of experiments M = 100. For each m < M, we apply a mixing function to
the database { xn }. For each m, we also define a train-test split of the database, with a balance
of 80% /20%. Then, for each m we have a split Xtest

m and Xtrain
m. 

However, in order to assess the accuracy of the estimator regarding the available number of
training vehicles, we let the model discover the training set step by step. At Each step l  we
adds 10% of the total  number of training vehicles.  At the end, we have in fact  M sets of
estimations for each l:

⟨ ŷml
test ⟩=F ( X m

test|Xml
train , Y ml

train , w ,k ) (16)

With the definition of relative errors, we are able to compute the accuracy πml
test for the set of 

errors. At the end, we have M learning curves of L evaluations of accuracy. For each step l, 
we compute the mean and the 5%-quantile of the M sets.

In the figures 6 and 7, we observe the learning curves for several values of k,  d1 and d2  and
different contexts of application of the PCA. For different values of  k, three different local
linear regressions are performed. The first one Llr-PCA is the Llr with the locality which is
only computed as the distance in the variable z1

P.
In addition, the total weight and the speed are used as parametric variables. Therefore, there is
an application of PCA for the subset {Pj} but not for {Wi}. The three other ones are the Llr
with  application  of  PCA  for  the  subsets  {Wi}  and  {Pj},  in  which  the  number  of  kept
dimensions are d1 and d2 respectively. We notice that the worst mean accuracy is achieved by
the value of  k = 20 for the two types of vehicles and for all the cases of hyper-parameters.
This is because the number of neighbors is too small to be able to give an accurate mean
behavior of the neighbors. We notice that the mean accuracy of k = 50 and k = 80 are quite
similar for a lot of training vehicles. The reason is the local behavior is not conserved if we
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keep too different vehicles for the training. It can be easily understood that there must be a
trade-off for the value of k. If the value is too high, we loose the local characteristics of the
most similar vehicles. 
On the contrary, we loose the notion of mean and the model can be too sensitive with regard
to some specific vehicles. The value of  k = 50 appears to be in the optimal range for both
types of vehicles. 

Concerning the best application of PCA, we see that the application of PCA on the subset
{Wi} has no benefit in this case and even tends to slightly decrease the mean accuracy. The
model Llr-PCA seems to be the more accurate for a small number of training vehicles. 

Figure 6 –  Comparison of accuracy for several local linear regressions for different
values of k for T2S3
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Figure 7 –  Comparison of accuracy for several local linear regressions for different
values of k for U2

Afterwards, we will compare the accuracy of the best estimators in the previous figures 6 and
7  with  regard  to  other  parametric  models  such  as  principal  components  regression  and
extended linear regression. 

We define a second estimator LR-5 that takes into consideration the gross-weight, the speed
and the variable  zP

1 to the power 1 to 5 which is added to the model, in order to model the
non-linearity  with  parametric  regression.  A more  general  model  as  principal  components
regression can be performed to the extended matrix of all features. The last estimator Llr is an
implementation  of  (Cleveland,  1988)  for  our  standardized  high-dimensional  data  without
applying PCA. 

In the figures 8 and 9, we see the mean of the M learning curves at each points l for the two
types of vehicles. We notice that the accuracy of the three estimators Llr-PCA's and the LR-5
are much better that the other parametric methods. 
π = 99.8% is reached at the end of the training but this good accuracy is obtained quickly,
with less than 100 vehicles  for the training phase of the both types.  For the other tested
methods, we see that, with enough components, the PCR is able to reach good accuracy, but
for a very large number of training vehicles.
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Figure 8 –  Learning curves of several models with a split Train-Test of the

database 1 for T2S3

Figure 9 –  Learning curves of several models with a split Train-Test of the

database 1 for U2
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In the figures 10 and 11, we show the mean accuracy of the four best estimators in the above-
mentioned figures and their 5%-quantile. We notice that the mean of the accuracy of the Llr-
PCA is the highest one. Moreover, we can also observe that the 5%-quantile is beyond the
confidence levels 99.8% and closely follows the mean. In particular, we observe that the mean
and the 5%-quantile are both above 99.8% for 100 training vehicles.

Figure 10 –  Learning curves of several models with a split Train-Test of the database 1
for T2S3
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Figure 11 –  Learning curves of several models with a split Train-Test of the database 1
for U2

The table 7 depicts the accuracy of the Llr-PCA in Leave-One-Out (LOO) experiment for the
database 1. If we compare it with the accuracy of the raw system in the table 3, we notice that
the mean of the errors is highly reduced while the standard deviation of the errors is slightly
higher for the T2S3 and for the U2. Moreover, we are able to perform better estimations for
323 trucks instead of 180 for the raw system. However, we have to pay attention that the H0

hypothesis Shapiro-Wilk test returns "false" for the trucks. Therefore, the confidence levels
must be carefully analyzed. 

Table 7 – Accuracy in Leave-One-Out with the local linear regression of
database 1 for the types of vehicles T2S3 and U2

GW-T2S3 GW-U2

Number 323 183

m (%) 0.02 0.11

s (%) 1.13 2.12

P-value Shapiro test 0 74

δ (%) 5 10

Πδ (%) 99.99* 99.99
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To this end, the figures 12 and 13 show the relative errors of the Llr-PCA compared to the
original errors and their respective Gaussian approximation. For the T2S3, we observe that
the relative errors are more localized around the zero error than the Gaussian approximation.
Therefore, we can expect that even if the Shapiro-Wilk test is negative, the real performance
would be as good as the claimed confidence level in the table 7. Moreover, we notice that the
total number of vehicles is much bigger for the Llr-PCA while the accuracy is still as high as
the previous one. 
For the U2, we notice that the number of tested vehicles remains the same but there is a real
improvement for mean of the errors.

Figure 12 –  Comparision of the estimation errors between the raw system and the Llr-
PCA for T2S3
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Figure 13 –  Comparision of the estimation errors between the raw system and the Llr-
PCA for U2

In the tables 8 and 9, we notice that the given penalties for both types of vehicles, in the case
of training by LOO. We notice a significant improvement with regard to the initial confusion
matrices in 5 and 6. 

Table 8 – Confusion matrix of the local linear regression in LOO with δ = 5%
for the T2S3 of the database 1

Estimation penalty

Yes No Total

Real Penalty Yes 28 23 51

No 0 353 353

Total 28 376 404

22



Technology Convergence 2023
Setting the Wheels In Motion: Reimagining the future of heavy vehicles, roads and freight

Table 9 – Confusion matrix of the local linear regression in LOO with δ = 10%
for the U2 of the database 1

Estimation penalty

Yes No Total

Real Penalty Yes 83 37 120

No 0 68 68

Total 83 105 188

Secondly, another experiment can be performed. We foresee that the following training is
much less suitable than the first one because we train the models with a permutation of the
measurements of the database 2 and then we evaluate the accuracy with the database 1.
Therefore, a small part of the features space of the database 1 will be considered during the
training phase.  We can define the same procedure as the equation (16),  with  Xtrain which
stands for a mixture of the database 2 and Xtest which stands for the whole database 1. 
We can observe the learning curves of these experiments in the figures 14 and 15. As already
said, it is not surprising to observe a decrease of the accuracy. In this context, the local linear
regression seems to stay the more robust model against a poorer training.

Figure 14 –   Learning curves of several models with the database 2 as training data and
with the database 1 as testing data for T2S3
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Figure 15 –  Learning curves of several models with the database 2 as trainingdata and
with the database 1 as testing data for  U2

The table 10 shows  the accuracy with the second training, for each type. We observe that the 
accuracy are still above 99.8% for the T2S3. 

Table 10 – Accuracy with the database 2 as training data with the local linear
regression of database 1 for the types of vehicles T2S3 and U2

GW-T2S3 GW-U2

Number 323 183

m (%) 0.21 1.23

s (%) 1.48 2.93

P-value Shapiro test 1 51

δ (%) 5 10

Πδ (%) 99.87* 99.74

6. Conclusions

Weight controlling on the highway can be a very painful work with a classical low-speed
weigh-in-motion.  The  high  quality  of  the  piezoelectric  quartz  sensors  and  the  recent  re-
foundation  of  the  roadway  provide  a  very  accurate  weight  estimation,  i.e.  an  error  of
estimation that has a probability of 99.8% to be inside the range [-5 %, 5%] for the trucks and 
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[-10%, 10%] for the U2. However, the main drawback was the very restrictive conditions that
a vehicle must meet to be weighed. As a consequence, only the half of the total number of
trucks can be weighed. 

Therefore, we proposed a comparison between several estimators and we concluded that the
non-parametric function gives the best accuracy with regard to the mean and the 5%-quantile,
for two different types of vehicles and for two types of training: cross-validation with LOO
and validation with an artificial training. Some additional advantage of this method can be
highlighted,  as  the capability  of the model  to  be easily  used in  another  HS-WIM system
without additional validation steps.

Our  method  increases  the  confidence  levels  in  all  cases  for  a  much  greater  number  of
vehicles, and especially to more than 99.99 % for the two types of vehicles in Leave-One-Out.
 Thanks to the cancellation of the validity state and to the introduction of the local linear
regression, we are able to increase the number of vehicles that are weighed, from 180 with the
selection to 323 for the T2S3 with our model. Both the improvement of the accuracy and the
bigger number of tested vehicles lead to an increasing of the given penalties from 16 to 28
and from 72 to 83 for the T2S3 and the U2, respectively. Moreover, we observed that the Llr
is able to reach this accuracy with 100 vehicles. 

Besides these good results, some key points remains interesting to investigate. 
The main one is the ability of the model to forecast the weight of other kinds of vehicles. In
selecting vehicles of concern, their similar physical structure can be easily approximated by a
single PCA variable. In allowing all types of vehicles in the same procedure, we can foresee
that  more  features  could  be  necessary  in  order  to  keep  good performance.  For  instance,
expanding  the  concept  of  local  linear  regression  to  an  additive  model  of  several  local
smoothers, as in a projection pursuit regression (Friedman, 1988), could be a good idea in
order to take more components into consideration. 
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