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Abstract 

This paper reports on an investigation to enhance the current WiM systems to inform the 

credible risk-informed management of the bridge network. Based on a review of the WiM and 

complementary data, the concept of a virtual WiM (vWiM) emerged. vWiM integrates WiM, 

vehicle classifier, ANPR, OBM and bridge monitoring data to provide a richer dataset. This 

work focused on Class 1 heavy vehicles (including load platforms, low loaders and heavy 

mobile cranes) which have high axle loads and tend to occupy multiple lanes. The data 

demonstrated that by merging the datasets together it is possible to extend the coverage of 

WiM data by generating vWiM data at other locations. Different applications using the vWiM 

concept were investigated, with a prototype tool developed. The first application confirmed 

the feasibility of extrapolating WiM data to classifier sites (for some applications), through a 

site similarity statistic (Kolmogorov-Smirnov). The second prototype tool developed was the 

tracking of uncommon Class 1 heavy vehicles through the network, using only WiM and 

classifier data. These tools and approaches provide an opportunity to inform the risk 

management of the bridges and enhance the credibility of access management and compliance 

decisions through a database of the high-risk vehicles that have crossed these structures. 

Keywords:  Virtual WiM, vWiM, WiM, risk-informed decision making, data quality, Weigh-

in-Motion, Virtual Weigh-in-Motion, ANPR, On-board Mass Management, OBM, vehicle 

classifiers, tracking, Class 1 heavy vehicles, load platforms, heavy mobile cranes, low loaders, 

bridge asset management, risk-informed management.
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1. Introduction

The road network managed by the Department of Transport and Main Roads, Queensland 

(TMR), covers 33,000 km of roads and 3,300 bridges. There is a need to balance productivity 

with the risk to infrastructure. This requires an understanding of what is occurring on the 

network, as well as when this loading occurred, to aid credible decisions. This work (Karl et 

al. 2022) looked at enhancing the current Weigh-in-Motion (WiM) systems to identify 

opportunities for improvement and provide credible risk-informed management of the bridge 

stock. This is most important for the vehicles with large axle loads, including low loaders, 

load platforms and mobile cranes. This paper is based on the research outcomes of the 

National Asset Centre of Excellence (NACOE) Project S26: Virtual WiM – Enriching WiM 

and Enhancing Decisions (Karl et al. 2022), undertaken over four (4) years between 2018 to 

2021. NACOE is a collaborative research agreement between the Queensland Department of 

Transport and Main Roads (TMR) and the Australian Road Research Board (ARRB), which 

is under NTRO. This work involved a review of the current WiM and classifier data, as well 

as datasets which would be complementary. Based on the WiM and complementary data the 

concept of a virtual WiM emerged, integrating WiM with vehicle classifiers, ANPR, on-board 

mass (OBM) and bridge monitoring data. This work focused on Class 1 heavy vehicles (load 

platforms, low loaders and heavy mobile cranes) which have high axle loads and tend to 

occupy multiple lanes.  

2. Methodology

As the understanding of the vehicles operating on the network is invaluable, WiM and 

datasets considered to be complementary, were investigated. The data reviewed, included 

WiM, Classifiers, Authority to Operate data, OBM, ANPR data and bridge monitoring data. 

This started with a characterization of the datasets, to understand what information is recorded 

for each technology, and how this information can be utilised to enhance WiM. As part of this 

process, the confidence level of the dataset was identified utilising the steer axle mass of 

semitrailers (vehicles with a configuration of 123), with the confidence level based on the 

deviation of the median steer axle mass from the expected value of approximately 5.5 t (Karl 

et al. 2022).  

Additionally, data filters were implemented on the WiM data to extract and investigate load 

platforms, low loaders and heavy mobile cranes from an Austroads class 6+ heavy vehicle 

dataset. This included a review of GVM, steer axle mass, WiM data confidence, speed, axle 

configuration axle spacing and vehicle count. 

3. Virtual WiM Tools

The vWiM concept came out of the review of WiM and complementary datasets. By merging 

the datasets together it is possible to enhance quality and extend the coverage of WiM data by 

generating virtual WiM data at other locations, see Figure 1. The concept of vWiM in this 

paper should not be confused with other descriptions of virtual WiM as in Europe and the US, 

which act as a high-speed pre-selection system located upstream of a heavy vehicle checking 

station equipped with weighbridge and enforcement personnel. 
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Different applications using the vWiM concept were investigated, with prototype tools 

developed. The first application identified the feasibility of extrapolating WiM data to 

classifier sites, through a site similarity statistic (Kolmogorov-Smirnov), which assessed: 

• similarity between vehicle configuration probability distributions indicating similar heavy

vehicle traffic

• similarity between the axle spacing probability distributions for similar configurations

indicating that the specific vehicles in traffic are similar

• similarity of the axle group mass probability distributions for similar configurations

(where available) indicating that the vehicles are transporting similar loads.

The approach was validated by treating WiM sites as classifiers (removing the axle mass data) 

during the extrapolation, and comparing the accuracy of the resulting extrapolations with the 

actual mass data. 

Figure 1 – Virtual WiM concept 

The second prototype tool developed using the vWiM concept was the tracking of uncommon 

Class 1 heavy vehicles through the network, using only WiM and classifier data. These tools 

provide an opportunity to inform the risk management of the bridges and enhance the 

credibility of access management and compliance decisions through a database of the high-

risk vehicles that have crossed these structures. 

1.1. WiM to Classifier Extrapolation 

Classifiers are cheaper to install and maintain than WiM, and provide information about the 

vehicle types, counts, configuration and axle spacing. The concept of vWiM enables the value 

of existing WiM infrastructure to be leveraged through the extrapolation of mass records from 

WiM to classifiers. The extrapolated vWiM data can provide estimates of mass distribution 
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for vehicles of interest across Queensland, while maintaining the benefit of the reduced costs 

associated with the classifier sites.   

To understand if the WiM data measured at one site is likely to be representative of the WiM 

data at a classifier site, a method was developed to assess the similarity between sites by 

comparing the data types available at both sites. 

The method relies on an assumed correlation between the distributions of axle spacing and 

configuration to the gross vehicle mass (GVM). This correlation is evaluated using the site 

similarity objective function, detailed in Equation 1. The degree of similarity between the 

sites was compared using axle spacings, distributions of configurations and GVM. This was 

undertaken first at the WiM sites only, to allow for validation of the similarity. This assessed: 

• similarity between vehicle configuration probability distributions indicating similar

general traffic

• similarity between the axle spacing probability distributions for similar configurations

indicating that the specific vehicles in traffic are similar

• similarity of the axle group mass probability distributions for similar configurations

(where available) indicating that the vehicles are transporting similar loads.

The site similarity statistic is determined through a weighted ratio of the difference in axle 

spacing θAS and configuration θVC between sites, with the weights balanced.  

𝜃1,2 =
𝑊𝑉𝐶𝜃𝑉𝐶,1,2+𝑊𝐴𝑆𝜃𝐴𝑆,1,2

𝑊𝑉𝐶+𝑊𝐴𝑆
(1) 

where 

θ1,2 = 
multi-objective assessment between the reference and comparison 

datasets 

1 = 
the reference dataset (from a WiM site that has data that can be 

extrapolated elsewhere) 

2 = 
the comparison dataset (from a classifier site that records axle 

spacing data but not mass) 

WVC = the vehicle configuration objective function weight 

θVC,1,2 = 
the objective value for vehicle configuration distribution between 

the reference and comparison datasets 

WAS = the axle spacing objective function weight 

θAS,1,2 = 
the objective value for axle spacing between the reference and 

comparison datasets. 

Using this statistic, the similarity of WiM or classifier sites is calculated using axle spacing 

and configuration frequencies. The similarity statistic combines discrete distributions of 

vehicle configuration with the continuous distribution of axle spacing grouped by 

configuration. Due to the primary purpose of this statistic being a means of comparing the 

similarity in the WiM and classifier data, the mass is not considered. However, the mass is 

used to validate the methodology, by comparing WiM sites. The viability of the statistic in 

choosing the WiM data which may be extrapolated to classifier sites was then assessed for 
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similarity utilising the D-statistic of the two sample Kolmogorov-Smirnov test. For this test a 

high site similarity objective function value should yield a low D-statistic value. The 

hypothesis was tested utilising data from WiMs which were within confidence of class B or 

greater, utilising data from 20 sites between January 2019 to February 2020. The data 

confidence level is based on the deviation of measured steer axles for 123 vehicle 

configurations against a set 123 steer axle mass (Karl et al. 2022). 

Using the site similarity statistic, WiM sites with a high degree of similarity were identified 

and the relationship between the similarity statistic and the difference in GVM distributions 

was considered utilising the Kolmogorov-Smirnov two sample test. This process acted as 

ground truth for the predicted similarity score calculated between WiM and classifiers. The 

regression statistics of this relationship has a reasonably high R2 value of 0.75. Site pairs with 

high similarity correlate well with the D-statistic, however medium scores for site similarity 

were found to be less well correlated. This may indicate that the site similarity statistic can be 

further optimised. In its current form, the site similarity statistic is unable to be used as a 

continuous predictor of how representative a WiM site is of a classifier.  

The population of interest shown in the red box in Figure 2 has high site similarity and low D-

statistic, indicating that the site pairs within this area may be suitable for extrapolation. This is 

due to the much higher degree of correlation (closeness to the 45-degree line) and the very 

low difference in GVM distributions between the sites (low values in the y-axis or D-statistic) 

This population can be numerically defined as site pairs with a similarity statistic greater than 

0.85. Alternatively, this population can also be defined as those pairs with a D-statistic of less 

than 0.2, however this definition is not useful when comparing WiM to classifier sites, as the 

D-statistic between GVM distributions cannot be calculated.

Figure 2 – Site similarity statistic against KS statistic two sample test 

Suitable for extrapolation 
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Based on the correlation between GVM similarity and the site similarity objective function 

(R2 = 0.75), approximating GVM profiles to classifier sites was concluded to be viable. This 

statistic can predict how similar a site’s GVM profile is without GVM data.  

Extrapolating dissimilar WiM data to classifier sites will result in unrepresentative GVM 

profiling. The minimum similarity index was set at a lower bound of 0.85 based on a reduced 

correlation to the D-statistic below this threshold. When the similarity score is higher than 

0.85, the observed low D-statistic values show that the GVM distributions between the sites 

are similar, which is a key criterion for extrapolation, as the source of data should match the 

targeted or missing data’s GVM distribution, below 0.85 and the correlation diminishes.  

Approximately 20% of WiM site pairs have a similarity objective function value greater than 

0.85 as seen in Figure 3. Based on these results alone it is believed that at least 20% of WiM 

to classifier site pairs could benefit from extrapolated WiM data. A systematic analysis of the 

relationship between the acceptable level of error in the extrapolated GVM and the true GVM 

could result in an updated lower bound which may increase the volume of classifier sites for 

which mass can be extrapolated without introducing substantial error.  

Figure 3 – Volume of WiM site pairs with an acceptable level of site similarity 

Based on the similarity achieving an appropriate level of similarity (use case dependent) can 

be used to generate measured distributions of parameters of interest by vehicle configuration. 

The measured distributions can then be extrapolated based on vehicle counts (by 

configuration) at a classifier site with similar traffic. In other words, distributions of vehicle 

characteristics from an origin site are scaled by the ratio of the number of vehicles at the 

origin site to the number of vehicles with the same configuration at the target site. 

This gives an estimate of the expected mass at the classifier site without additional capital 

expenditure. While the objective is to extrapolate WiM data to classifier data, the accuracy of 

this procedure cannot be directly assessed as the GVM profile is unknown at the classifier 

site. The effectiveness of the extrapolation from WiM to classifier can therefore be inferred 

from the results of extrapolation from WiM to WiM.  

Note: The green population is the same as that in the red box shown in Figure 2. 
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Figure 4 shows the extrapolation of the multi-objective function for five sites based on the 

similarity of WiM sites. The columns show mass distribution for the target site, while the 

rows show the site which was used to extrapolate the data from. For example, the top right 

figure shows the target site of Belmont (north) WiM - Barcaldine WiM was used to 

extrapolate for Belmont (north). Similarly, the bottom left figure shows the target site of 

Barcaldine WiM, for which the mass from the Belmont (North) WiM was used to extrapolate 

for Barcaldine. The distribution matrix shows how similar the extrapolated (dashed line) and 

true (solid line) GVM distributions are. Over-estimates are shaded red, and underestimates 

yellow. The higher the similarity between the sites, as shown in the top right of each chart, the 

less shaded area is expected. 

Note: X-axis provides the GVM of the vehicle in tonnes. 

Figure 4 – Extrapolation of GVM from a WiM site to a classifier 

The closest WiM site (as the crow flies) deemed suitable for extrapolation to a classifier site 

was calculated using the method shown in the pseudo code in Figure 5. As per the pseudo 

code, the similarity score was calculated for each WiM to classifier pair in the dataset.  
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Figure 5 – Pseudo code for finding the closest WiM site to extrapolate data 

To see how many WiM to classifier pairs were viable (similarity > 0.85), 95 classifiers were 

compared against 20 WiM stations. 93 classifier sites had a similarity score of greater than 

0.85 for at least one of these WiM sites. This indicates 97% of classifier sites have enough 

similarity to WiM sites to allow for extrapolation from at least one site. Previously, the 

likelihood of one WiM matching with another classifier was inferred to be ~20%, but because 

there are multiple WiM sites across the network the likelihood that at least one has a 

similarity score greater than 0.85 for any given classifier is much greater than 20%.  

1.2. Prototype Tracking Tool 

Tracking Class 1 heavy vehicles across the Queensland network enhances the value of WiM 

data by allowing the investigator to know where a vehicle of interest has been before. Not 

only can multiple records be attributed to the same vehicle, but the trip and destination of the 

vehicle can also be inferred. The data can be used in real-time predictive and monitoring 

applications as well as retrospective analysis.  

In contrast to an isolated WiM record, a vehicle trip can be used to confirm all infrastructure 

crossings even if these assets are far from any WiM or classifier sites. Knowing the source of 

a WiM record at different sites can also be used to improve confidence in the axle spacing and 

mass data for the vehicle, for retrospective mass calibration at the site, particularly when the 

vehicle is known to have a consistent weight, as in the case of cranes and load platforms 

transporting indivisible loads.  

WiM and classifier records do not contain a unique vehicle identifier unless they are 

integrated with additional technology. This limits applications of WiM for tracking to the use 

on vehicles with uncommon ‘axle spacing footprint' during the travel window. This is the case 

for the specific vehicles of interest to this project, such as low loaders, load platforms and 

heavy mobile cranes.  

By merging WiM and classifier data, the density of sites collecting data is effectively 

increased, improving the odds of identifying the trips taken by vehicles of interest. If, for 

example, a vehicle tracked across multiple classifier sites also crosses a WiM site, the data 

FOR each classifier site 𝐶𝑖 
FOR each WiM site 𝑊𝑗 

Similarity: 𝑆 = L1(𝐶𝑖,𝑊𝑗) 

Distance 𝐷  = Geodetic_distance (𝐶𝑖,𝑊𝑗)

IF 𝑆 > 0.85 : 

Set Covered_by_WiM[𝐶𝑖] = TRUE 

IF 𝐷 < Minimum_distance_to_WiM[𝐶𝑖] 
Set Minimum_distance_to_WiM[𝐶𝑖]= Distance(𝐶𝑖,𝑊𝑗) 

Set Best_WiM_site[𝐶𝑖] = 𝑊𝑗 

FOR each classifier site 𝐶𝑖 
If Covered_by_WiM[𝐶𝑖] is TRUE 

Plot classifier site 𝐶𝑖 
Plot best_WiM_Site[𝐶𝑖] 
Plot line between site 𝐶𝑖 and Best_WiM_site[𝐶𝑖] 



9 

Technology Convergence 2023

Setting the Wheels In Motion: Reimagining the future of heavy vehicles, roads and freight 

from the WiM site becomes ‘virtually’ known at the other sites. It is possible that a vehicle 

may only be laden for part of a trip or may change loads, however, because the vehicles are 

permitted to carry indivisible loads, it is less likely. When it is possible to track a vehicle in 

this way, periods where data are inaccurate or lost at individual sites becomes less mission 

critical – value and redundancy are increased.  

Matching records were identified by comparing the records of a reference vehicle of interest’s 

axle spacing to all records of the same vehicle configuration within 10 days of the initial 

observation. Vehicle mass was not chosen for use in the matching algorithm, due to mass not 

being included in the classifier dataset. The performance of the algorithm was benchmarked 

using a representative dataset of WiM and classifier records in combination with a small 

sample of IAP data which contains unique vehicle identifiers. Lastly, the vehicle trips and the 

infrastructure crossings were inferred and presented as an application of WiM Class 1 heavy 

vehicle tracking. 

The likelihood of matching WiM records originating from the same vehicle is dependent on 

variation in axle spacing and configuration, referred to as the vehicle footprint. To investigate 

the general characteristics of low loader and load platform WiM records, a test dataset of 

Class 1 heavy vehicle configurations from January 2019 to February 2020 was used.  

In the dataset 142 sites contained a minimum of 1,000 WiM record events and 293 different 

vehicle configurations were observed. Ninety-seven vehicle configurations had less than 

1,000 records across all sites. While this indicates that for some vehicle types matching could 

be done solely with the vehicle configuration, between 10,000 and 200,000 records were 

found for the 5 most common configurations. Vehicles with these configurations are 

indistinguishable from each other using configuration alone. Therefore, to increase the 

uniqueness of the WiM records for matching purposes, the additional characteristics identified 

as likely candidates to be used as a pseudo-identifier included axle spacing, time between 

records and location of records. 

Vehicle records were identified as a potential match if they had the same configuration, were 

less than 10 days between records and all the matching axle spacings were within ± 200 mm. 

For potentially matching records, the average variation between axle spacings for two records 

with matching configurations was evaluated to assess fitness of the match using Equation 2. If 

Δs is less than 200 mm, then the pair of records was considered a match. Pairs which shared a 

common record were then collected into trips which were sorted by time. 

∆𝑠=
∑ |𝑠𝑟,𝑖−𝑠𝑐,𝑖|
𝑆
𝑖=1

𝑆
(2) 

where 

Δs = 
the average variation in axle spacings between the comparison and 

reference vehicle 

S = the number of axle spacings in the vehicle configuration 

sc,i = the ith axle spacing of the comparison vehicle 

sr,i = the ith axle spacing of the reference vehicle 

To explore the value of the matching algorithm, a best-case scenario was created. Over the 

one-year period, records with configuration classes observed more than 1,000 times were 

excluded. The remaining 97 configurations are so unique that they are expected to originate 

from a small number of vehicles, significantly decreasing the chance of false positives. Using 
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this filtered dataset matched records identified using the algorithm became WiM records pairs 

and were predicted to have the same vehicle source.  

Out of 97 configurations and 11,095 WiM records, 723 unique trips were found. The best-

case dataset of rare vehicle configurations represents 2.6% (11,095 out of 420,737) of all 

WiM and classifier records in the Class 1 heavy vehicle categories. Of these records, 34% 

were assignable to unique trips. Based on the characteristics of the WiM data, a lower bound 

of 34% of Class 1 heavy vehicle WiM activities can be tracked effectively using the vehicle 

footprint algorithm when not considering accuracy.  

To determine the most likely trip of these matched records, map matching, in combination 

with a routing algorithm which was developed in NACOE R103 (Hore-Lacey et al. 2020) was 

used. The most likely trip is always considered to be the shortest trip by time when travelling 

at the speed limit. As the vehicles of interest are low loaders and load platforms, the 

networking was restricted to within 100 m of the ‘Heavy Vehicle Routes’ network 

(Queensland Department of Resources 2021). By determining the vehicle’s trip, infrastructure 

crossings of interest can be detected. Using the tracking algorithm and routing methodology, 

bridge crossings can be inferred for individual vehicles based on the order of the movements.  

To understand if matched sets returned by the algorithm all originate from the same vehicle, a 

separate IAP WiM merged dataset was used. It should be noted that this dataset did not 

include low loaders or load platforms. IAP data is provided per vehicle over the entire 

network. By comparing IAP records from the same vehicle at WiM sites to vehicle trips 

generated via the tracking algorithm, the accuracy of the algorithm can be determined.  

One month of IAP tagged vehicle records were matched to WiM movements at the Nudgee 

site. IAP records were aligned with WiM movements using geospatial and temporal 

alignment. By synthesising the IAP and WiM data, unique vehicle identifiers were associated 

with WiM records. These identifiers were then used to validate the accuracy of the vehicle 

tracking algorithm. If a vehicle trip is accurate, then all records within the trip should have the 

same vehicle identifier. The matching algorithm was used to find pairs of records which 

crossed the Nudgee site and were predicted to be from the same vehicle. For each pair, a pass 

was assigned if the IAP vehicle IDs were identical. The average accuracy of the matching 

algorithm was 38%. Based on these results, an accuracy statistic for the more common Class 1 

heavy vehicle configurations is expected to be at most 38%. This is based on the average rate 

of successful vehicle matches with the same IAP vehicle identifier. It is noted that the rarer 

the configuration, the higher the accuracy. With an average accuracy of 38% it is expected 

that if all vehicle configurations were processed ~12.8% of all Class 1 heavy vehicle 

movements could be tracked using this methodology.  

This adjacent IAP validation demonstrates that vehicle matching using WiM footprints is only 

feasible when the vehicle configuration and axle spacings are significantly rare. For most 

vehicles, and even some low loader configurations, this is not the case. While low loaders and 

load platforms are relatively unique, the consistency of axle spacing and configuration 

measurements between sites was lower than expected. This resulted in fewer matches than 

what is possible using a vehicle footprint alone.  

Two possible reasons for a lower-than-expected match volume and accuracy are: 

• Variance in the axle spacing measurements between sites is greater than variance

between different unique axle spacings.

• Vehicle configurations are not being classified in the same way or the classification

windows are unsuitable for vehicle tracking.
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4. Discussion

The developed WiM to classifier extrapolation considers the site similarity statistic for 

pairing, the correlation was seen to be relatively strong with a D-statistic value greater than 

0.85. Optimisation of the similarity score formula could greatly improve the accuracy of this 

proposed multi-site extrapolation by better distinguishing between different sites with similar 

similarity scores. It is noted that this task may be optimised to tune to the weighted effects of 

axle spacing and configuration differences.  

Furthermore, it may be possible to extrapolate WiM data to locations where neither a WiM 

site, nor a classifier is present through integrating several classifiers and WiM sites. Song et 

al. (2019) proposes a geospatial extrapolation methodology to predict traffic volumes of 

heavy vehicles across a road network based on point data sources. This methodology 

interpolates traffic count data between points in the network through using a regression model 

known as kriging (Song et al. 2019). One primary advantage of kriging methods over WiM to 

classifier site extrapolation is that the GVM distribution of any road segment in Queensland 

could be predicted. Previous attempts to perform kriging with the existing WiM network were 

significantly limited by the rate of coverage of WiM across the network (Hore-Lacey et al. 

2020). While not impossible to perform kriging interpolation when network coverage is low, 

confidence intervals over resultant predictions are so wide they offer little value relative to 

guess work. Additionally, the use of inductive loop and WiM signatures as a footprint of 

vehicles (SBIR N.D.) may be considered in the future for investigation as a means of refining 

the matching of vehicles. The use of ground contact width, currently not collected within 

Queensland, may also be used as an additional means of improving the footprint of the 

vehicles of interest. 

Strong correlations between axle spacing and GVM distribution that became evident as part of 

this investigation can contribute to future extrapolation and interpolation investigations. While 

the methodology focused chiefly on extrapolating WiM data to classifiers, if traffic data is 

available, this methodology can be extended to other datasets, such as ANPR, segmented IAP 

and telematics data. The site similarity and extrapolation procedures required aggregated data 

on vehicle type and axle spacing. Where this data is available the methodology can be 

repurposed. Combining the point-to-point based methods documented here with kriging 

interpolation could greatly improve the geospatial coverage of GVM profiling. 

5. Conclusions

The project demonstrated that there are increasing opportunities for WiM and related 

technologies to support evidence-based decisions. Enhancements to WiM, utilising data 

fusion or added technology would provide road agencies with better data more often, aiding in 

credible decision making based on the risk to the infrastructure.  

Internal engagement, national and international reviews also found that the value proposition 

for WiM data is not well articulated because the focus is on collecting data to inform 

compliance rates rather than the optimal management of the road and bridge network and the 

heavy vehicles that provide transport services for the community. 

The vehicles posing the greatest risk to bridges across the network were investigated to 

understand their characteristics and enable them to be tracked through the network. The 

applications of vWiM expand with increasing data quality and data coverage.  

While it is possible to extract value from imperfect data, it is also the case that some 

applications require improved quality and reliability of data. It was concluded that there are 
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many means for improving data quality, including updating specifications for WiM and 

classifiers (improving axle spacing measurement accuracy), continuous improvement of data 

post processing with a network-level focus, and live calibration of existing WiM sites using 

vehicles of known and consistent mass, identified in the traffic stream. 

Data coverage can be improved through strategic maintenance of existing WiM systems, 

identifying and addressing data black spots, using the WiM data extrapolation methods 

developed as part of this project to provide virtual WiM data at classifier sites, combining 

complementary datasets, incorporating the connection between WiM and other heavy vehicle 

data sources, including bridge monitoring, ANPR, IAP, ATO, OBM, and classifier data. The 

more independent complementary data sources that can be effectively combined, the more 

opportunities that will arise.  
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