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Abstract 

The estimation and monitoring of the in-service load carrying capacity of prestressed concrete 
bridge (PCB) structures hold significant importance, especially due to prestress losses occurring 
with their aging. Therefore, it becomes crucial to develop an effective methodology that 
requires fewer measurements, enabling the estimation of existing prestress force (PF) and 
moving force (MF) without relying on detailed knowledge of vehicle characteristics and the 
prestress bridge-vehicle interaction system. This study proposes an improved methodology for 
identifying PF and MF synergistically. This approach incorporates displacement measurements 
and integrates a load shape function (LSF) approach alongside the virtual distortion method. 
The identification process is improved by adopting a truncation coefficient for LSF, which 
eliminates ineffective elements and enhances reliability. The proposed improvement technique 
demonstrates commendable accuracy and facilitates timely maintenance of PCBs. As a result 
of adopting this approach, engineers and practitioners can assess and monitor the load carrying 
capacity of PCBs. Consequently, these essential transportation infrastructures can be ensured 
to be safe and durable for the foreseeable future. 
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1. Introduction 

In recent years, the monitoring of existing prestress force (PF) and the identification of moving 
force (MF) have gained significant popularity, primarily because of the catastrophic failures of 
bridge structures around the world. The main intention of these efforts was to estimate the in-
service load carrying capacity of prestressed concrete bridges (PCBs). 
 
Numerous researchers have investigated the identification of PF using modal information, 
including natural frequencies and mode shapes. There is, however, one major challenge 
associated with this method, which is the inability to detect any significant changes in natural 
frequency or mode shape because of prestress loss. Also, the modal parameters of PCBs are 
greatly affected by the effects of strengthening and compressing, which further complicate the 
analysis (Gan et al., 2019; Law & Lu, 2005; Saiidi et al., 1994). In addition, optical fibre sensors 
have been used in studies to estimate prestress forces (Gao et al., 2006; Xuan et al., 2009). It is, 
however, practically impossible to apply this method to existing structures. Further, the 
accuracy of the results obtained through optical fibre sensors is uncertain due to potential issues 
such as misalignment, mechanical damage, and improper handling (Gao et al., 2006; Xuan et 
al., 2009). 
 

A direct measurement of vehicle excitation forces presents significant challenges in terms of 
cost and complexity, making it virtually impossible to instrument each axle. It is also necessary 
to consider the mechanism of interaction between the vehicle and the bridge when identifying 
MFs. As a result, researchers are beginning to focus their efforts on indirect methods of 
measuring MFs, such as the use of displacements, accelerations, and bending moments. Indirect 
methods for identifying MFs can be divided into two main categories: analytical methods and 
numerical methods. Analytical models include time domain analysis (Law et al., 1997), 
frequency-time domain analysis (Law et al., 1999), and influence line analysis (Yang et al., 
2021), while numerical models include interpretive methods-I (IM-I) (Chan et al., 2001), 
interpretive methods-II (IM-II) (Chan et al., 1999), optimal state estimation approaches (Law 
& Fang, 2001), and updated static component methods. The choice of method for identifying 
MFs is greatly influenced by factors such as sensor types, sensor location, number of sensors, 
and sampling frequency. Furthermore, previous studies primarily concentrated on the analysis 
of simply supported PCBs. 

Furthermore, the identification of PF and MF in a PCB can be accomplished through a load 
shape function (LSF) approach, which integrates the virtual distortion method and Duhamel 
integral. This method involves measuring dynamic responses, such as displacements and strains 
(Xiang et al., 2017; Xiang et al., 2016).  
 
Hence, the identification of PF and MF ultimately becomes an inverse problem characterized 
by a system of linear algebraic equations. As a result, this force identification process is 
inherently ill-conditioned. The ill-posed nature of the problem may be mitigated by using 
various regularization techniques, including truncated generalized singular value 
decomposition (Chen & Chan, 2017), and modified preconditioned conjugate gradient methods 
(Chen et al., 2020).  
 

A synchronized assessment method for determining structural damage and MF, and a truncated 
load shape function (TLSF) were adopted to improve the efficiency and stability of the inverse 
problem calculation by smoothening pulse function via limited number of TLSF. The proposed 
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method was also validated for a range of loads and speeds to ensure its robustness and efficiency 
(Zhong et al., 2022). 

Consequently, the primary objective of this study is to improve the accuracy of identifying PF 
and MF in PCBs. An improved load shape function with a truncating coefficient is proposed to 
improve force identification accuracy. 

2. PF and MF Identification via Load Shape Function Approach

The general equation governing the dynamics of a prestressed bridge vehicle system can be 
expressed as follows, considering both the effects of MF (𝐅(𝒕)) and PF (𝐓). 

Figure 1 – Prestressed concrete bridge model 

 𝐌𝒙̈ + 𝐂𝒙̇ + 𝐊𝒙 = 𝐙{𝐅(𝑡)} + 𝐏           (1) 
In the above equation. 𝒙 , 𝒙̇  and 𝒙̈  are the displacement, velocity and acceleration vectors 
respectively; 𝐌, 𝐂 and 𝐊 are the mass, damping and global stiffness of the original structure 
matrices of the PCB structure, respectively and Z represents the mapping matrix. As a result of 
incorporating the Duhamel principle, the dynamic equation can be formulated as follows (Xiang 
et al., 2017). 

𝐘௝ = 𝐇௝F + ∑ ∑ 𝐃௜௞
௝௡

௜௞ 𝐏௜௞  𝑗 = 1, 2, 3, . . . . . . . . . 𝑛𝑘 + 1  (2) 

where 𝐘௝ is the measured discrete response by the 𝑗௧௛ sensor while 𝐅 and 𝐏௜௞ are the discrete 
excitation load and virtual force vector respectively. 𝐇௝ and 𝐃௜௞ are impulse response matrix 
and dynamic response matrix of the system composed of impulse response functions between 
the 𝑗௧௛ sensor with 𝐅 and 𝐏௜௞ respectively. 

LSF plays an important role in addressing the identification problem of unknown forces by 
reducing the unknown parameters and converting them into fitting coefficients. It is possible to 
develop LSF by considering the vertical displacement as well as rotation of the time-history 
nodes in the beam. 

An approach based on LSF fitting is used to solve inverse problems with a high level of 
accuracy. In this method, LSF matrix of beam (N) is introduced with the appropriate coefficient 
(α) to replace the unknown load and can be rewritten as shown below. 

𝐅 = 𝐍𝛂 (3)
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Consequently, the dynamic equation can be extended by incorporating LSF as demonstrated in 
Equation (4). 

𝐘௝ = 𝐇௝N𝛂ி + ∑ ∑ 𝐃௜௞
௝௡

௜௞ 𝐍𝛂௜௞  𝑗 = 1, 2, 3, . . . . . . . . . 𝑛𝑘 + 1  (4) 

where, 𝛂ி  and 𝛂௜௞ are the relevant coefficient of the moving excitation and coefficient of the 
𝑘th virtual force caused by 𝑖௧௛ local pseudo-load. The detailed methodology for identifying the 
PF and MF based on the LSF approach is illustrated in Figure. 2. 

Figure 2- Methodology for LSF based PF and MF identification. 

The prestressed beam can be considered as a 2D beam element with axial distortion, bending 
distortion and bending plus shear distortion to develop the global stiffness matrix (𝐊௚,௜) of the 
element considering the PFs as virtual pseudo loads using the virtual distortion method. A 
bridge structure can be viewed as a two-dimensional beam with three degrees of freedom, as 
shown in Figure 3. 

Figure 3- 2D beam element with 3 DOFs at each node. 
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𝐊௚,௜ =
𝐓

ଷ଴ஞ

⎣
⎢
⎢
⎢
⎢
⎡

 

 30  0 0
 0  36  3𝜉

 0  3𝜉  4𝜉ଶ

−30 0  0
0 −36  3𝜉

0 −3𝜉  −𝜉ଶ

−30  0  0
0 −36  −3𝜉

0 3𝜉  −𝜉ଶ

30 0 0
0  36   −3𝜉

0 −3𝜉  4𝜉ଶ⎦
⎥
⎥
⎥
⎥
⎤

  (5) 

In the above matrix, T is the PF and 𝜉 is the length of the element. Also, the local pseudo load 
at each node 𝐏௜

௘ can be correlated with 𝐊௚,௜ and nodal displacement {𝑥}௜ as shown in Equation 
(6). 

𝐏௜
௘ = [𝐊௚,௜] {𝑥}௜  (6) 

As a result, it is possible to estimate the average PF by measuring displacements and rotations 
at each point of interest. This estimation is achieved by calculating the local pseudo load at each 
node within the selected element. 

3. Improved PF and MF Identification via TLSF

LSF is an important concept in the Finite Element Method (FEM) that helps to accurately 
represent the force or load distribution on a structure. The use of LSFs also facilitates the use 
of higher-order elements, which can result in more accurate results than those obtained with 
lower-order elements. Since higher-order elements can represent complex load distributions 
more accurately, simulations of the structure's behaviour are more accurate. 

As shown in Equation (3), to identify the unknown forces, LSF matrix is constructed as a block 
diagonal matrix using shape function column vectors. The arrangement of the block diagonal 
matrix of LSF is shown in Figure 4 (Reid & Jennings, 1984). It is possible to express the number 
of time steps within the element (𝜀) in terms of both the sampling frequency (𝑓௦) and the main 
frequency of LSF (𝐹௟ ). Using the power spectral density (PSD) variation of the measured 
response in relation to the structure's frequency, the main frequency can be determined. The 
time step between each node is assumed to be equal to half LSF period. 

𝜀 =
௙ೞ

ଶி೗
 (7) 

It is crucial that the frequency range of LSF matrix is higher than the primary frequency range 
of the unknown force that needs to be identified when creating LSF matrix. It is thus ensured 
that LSF matrix accurately captures the characteristics of the force and produces reliable results. 
To obtain the appropriate frequency 𝐹௟, PSD curve is developed by converting time-domain 
measurements into frequency-domain measurements using Fast Fourier Transform (FFT). 
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Figure 4 – Block diagonal matrix of LSF 

To study the sensitivity of the 𝐹௟ and its influence on force identification accuracy, a 6m span 
simply supported prestressed box girder bridge model with 2nos of 15.2mm parabolic tendons 
is used to apply different levels of PFs as shown in Figure 5 and Table 1. In this study, 170.0kN 
and 380.0kN PFs are applied with different vehicle excitation force to measure the vertical 
displacements and longitudinal strains at each node as tabulated in Table 2. The sampling 
frequency and sampling time are 1000Hz, 3s respectively.  

A laboratory bridge model (Xiang et al., 2017) with a PF of 171.3kN is used in this study for 
the validation of the numerical model. The concrete density and elastic modulus used are 
2.68×103 kg/m3 and 28.66 GPa respectively. The different PFs are applied as external pseudo 
loads, a time-varying impulsive excitation force is applied at the midpoint of the beam as 
illustrated in Table 2, and dynamic responses are measured at the midpoint of the beam 
considering the worst-case scenario. 

Figure 5- Geometry of the simply supported prestressed box girder bridge model. 
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Table 1- Parabolic tendon arrangement in the simply supported box girder. 

Table 2- Vehicle excitation and PF for the numerical and laboratory model. 

ABAQUS software is used with C3D8R solid elements to model the box girder bridge. 
Displacement responses are compared with laboratory model responses and different noise 
levels, such as 2%, 5% and 10%, are added to the displacement responses obtained from the 
numerical study. The polluted dynamic responses (𝑌௜

௉) for the synergic identification of PF and 
MF, estimated responses (𝑌௜

௘) are generated by introducing random white noise in the following 
manner. 

𝑌௜
௣

=  𝑌௜
௘ (1 +∈௉ . ∅௜)  (8) 

where, ∈௉  represents the level of noise and ∅௜  represents a random value obtained from a 
standard normal distribution. The deformed shape of the box-girder bridge model is shown in 
Figure 6. 

Figure 6- Deformed shape of the prestressed box girder bridge model. 

A correlation exists between noise levels and LSF's main frequency, noting that an increase in 
noise levels can lead to a corresponding increase in LSF's main frequency. As a result, it 
emphasizes the sensitivity of frequency to noise levels, and the importance of implementing 
appropriate regularization methods to enhance force identification accuracy. 

Longitude (mm) 0 500 1000 1500 2000 2500 3000 
Distance (mm) 235 209 184 163 146 134 130 

Cases PF /(kN) Excitation force /(N) 

1 170.0 20000(1 + 0.73𝑆𝑖𝑛൫10𝜋(𝑡 − 0.02)൯) 

2 380.0 20000(1 + 0.73𝑆𝑖𝑛൫10𝜋(𝑡 − 0.02)൯) 

Laboratory model 171.3 4985(1 + 0.73𝑆𝑖𝑛൫10𝜋(𝑡 − 0.02)൯) 
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Figure 7- Power spectral density curve with different noise levels. 

The analysis of PSD curve presented in Figure 7 reveals that the main frequency of the system 
increases as the noise levels rises. This observation strongly indicates that the main frequency 
is particularly sensitive to changes in noise levels. The impact of LSF frequency on the precision 
of PF and MF identification is evaluated through the computation of the condition number. This 
number represents the ratio of the maximum to minimum singular values of the bridge-vehicle 
system. Frequencies of 5Hz, 10Hz, and 20Hz are analysed for this purpose. The changes in 
singular values are illustrated in Figure 8, revealing a consistent decline as the LSF frequency 
rises. Correspondingly, the condition number diminishes with higher LSF frequencies. 
Consequently, the enhancement in LSF frequency contributes to a reduction in the inherent 
ambiguity of the prestressed bridge-vehicle system. 

Figure 8- Influence of LSF’s frequency on the singular values. 

To propose a simplified approach for improving force identification accuracy by reducing the 
ill-posedness in LSF, an advanced technique involving a truncating coefficient (𝜓) has been 
introduced. The approach is based on modifying the shape function of each node by 
incorporating the 𝜓 value. This is accomplished by eliminating small elements from the matrix 
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corresponding to the shape function as shown in Equation 9. This modification improves the 
conditioning of the LSF problem and results in more accurate force identification. 

𝜓 =
∑ ௡ಿభ,೔

೛
೔సభ ା∑ ௡ಿమ,೔

೛
ഄష೛ ା∑ ௡ಿయ,೔

ഄ
ഄష೛ ା∑ ௡ಿర,೔

೛
ഄష೛

∑ (௡ಿభ,೔
ା௡ಿమ,೔

ା௡ಿయ,೔
ା௡ಿర,೔

)ഄ
೔సభ

  (9) 

where, 𝑛ேభ,೔
, 𝑛ேమ,೔

, 𝑛ேయ,೔
 𝑎𝑛𝑑 𝑛ேర,೔

 represent the number of elements in the matrix relative to the 

shape function, while 𝑝 is the truncating point on the column matrix of the shape function. In 
general, a value of 𝜓 are within the range of 0.9 and 0.95. Consequently, the identification of 
unknown forces (𝐅) incorporating TLSFs can be expressed in the following manner along with 
the pertinent coefficient (𝛂). 

𝐅 = 𝜓𝐍𝛂 (10) 

Analysing the shape function obtained by considering the frequency 5Hz, a 𝜓 value of 0.925 is 
obtained, and accordingly PF and MF are compared as shown in Figure 9. The relative 
percentage error (RPE) can be obtained from the following relationship. 

RPE =
||𝐅౟ౚ౛౤౪౟౜౟౛ౚି𝐅౪౨౫౛ ||

||𝐅౪౨౫౛||
× 100% (11) 

Based on TLSF, RPE has been reduced by 40.50% as compared to RPE obtained from LSF in 
MFI, while it has been reduced by 33.33% as compared to RPE obtained from LSF in PFI.  The 
same improvement pattern is observed in numerical studies as well as laboratory studies. TLSF 
approach proposed in this study effectively addresses the issue of ill-posedness resulting from 
LSF. It is crucial to carefully select the truncation coefficient to improve the accuracy of 
identifying PF and MF synergistically. 

(a)
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(b) 

Figure 9- Force identification using laboratory data incorporated with LSF and TLSF: 

(a) MF (b) PF.

4. Conclusions

Ensuring the accurate synergic identification of PF and MF is of the utmost importance when 
estimating the in-service load carrying capacity of PCBs. This estimation involves considering 
the impact of existing PF, which is affected by both short-term and long-term losses, as well as 
MFs acting on the bridge structures. However, achieving accurate identification of PF and MF 
poses challenges due to the inverse problem's nature and the ill-conditioning caused by 
computational and observational errors. To address these challenges, this study introduces an 
improvement technique by incorporating a truncation coefficient into the LSF of the prestressed 
bridge-vehicle system. Through the proposed method, the following conclusions can be drawn, 
which contribute to enhanced accuracy and efficiency in PF and MF identification. 

TLSF approach demonstrates its capability to improve the accuracy of PF and MF 
identification. Additionally, this method streamlines the reduction procedure of ill-posedness 
by considering the proposed truncating coefficient throughout the entire time history of nodes. 
The results highlight several advantages of the proposed TLSF method, including high 
accuracy, effectiveness, and reduced computational effort in regularization. 

The findings of this study will significantly contribute towards estimating the existing PF and 
MF with minimal data for structural health monitoring of PCBs. As a result of these findings, 
it will be possible to conduct forensic engineering assessments which will aid in the 
enhancement of the longevity of the bridge structure, thereby ensuring the safety of the public. 
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