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Abstract 

The focus of this paper is to use Naturalistic Driving Data to understand how the drivers 

manoeuvre an A-double combination in the roundabouts and evaluate performance in the 

roundabouts using measures like Low-Speed Swept Path (LSSP) and Tail Swing (TS). The 

analyses of the steering patterns and speed variations depict that the standard deviations of the 

responses of the drivers for a given travel direction in a roundabout are within 35o (17 % of the 

baseline) for the steering wheel angle and 8 km/h (40 % of the baseline) for the speed. It is also 

found that the cognitive workload of the drivers due to the steering pattern is higher in right 

turns compared to straight crossings through the roundabout.  The performance analyses show 

a dependency of LSSP on the instantaneous radius obtained from the vehicle's path, and the 

vehicle's travel direction in the roundabout. LSSP ranges from 7.7 m for a left turn in a 

roundabout with an inner radius of 12 m to 3.1 m for a straight crossing in a roundabout with a 

30 m inner radius.  TS is observed in only one roundabout and its magnitude goes up to 0.4 m 

in a roundabout of 30 m inner radius.  

Keywords:  High-Capacity Transport, A-double, Swept Path, LSSP, Tail Swing, Performance 

Based Standards, Roundabouts, Driver Behaviour, Cognitive Workload 
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1. Introduction

The roundabout is one of the creative structural improvements in the road network that has 

played a vital role in enhancing traffic safety. Their compact geometries help slow down 

vehicles and reduce the chance of fatal accidents (Elvik, 2003). However, this compactness 

makes it more challenging for long heavy vehicles like High-Capacity Transport (HCT) 

vehicles to navigate the roundabout compared to shorter vehicles. Here, HCT vehicles refer to 

heavy vehicles that are longer than 25.25 m or heavier than 64 tons, which is the conventional 

length and weight limit in Swedish regulations. Key questions that are addressed in this paper 

in relation to these vehicles are how drivers manoeuvre them in the roundabouts and 

consequently, how these vehicles perform in the roundabouts.  

Performance-Based Standards (PBS) is a regulatory scheme for HCT vehicles that includes 

performance measures with a quantified required level of performance (NTC, 2008). It offers 

these vehicles the potential to achieve higher safety and efficiency through innovative and 

optimized vehicle design. Low-Speed Swept Path (LSSP) and Tail Swing (TS) are two PBS 

measures commonly used for evaluating the performance of these vehicles in roundabouts and 

intersections. Hence, these measures are employed here to analyse the performance of two A-

double combinations in a few roundabouts in Sweden. LSSP is the maximum width of the swept 

path, i.e., the maximum road width swept out by the extremities of the vehicle as it moves along 

the path. TS measures the maximum swing-out of the rearmost corner of the truck and/or trailers 

relative to the path traced by the front outer wheel of the truck/tractor in a sharp turn. 

Many parameters influence LSSP. They include the roundabout’s design parameters, such as 

radius, number of lanes, entry and exit angles, design parameters of the vehicle, like wheelbase 

and coupling positions, and driver’s inputs, such as speed and steering angle. Simulation-based 

research has been used to understand the impact of these parameters on LSSP. For instance, 

Larsson et al. (2022) perform vehicle simulations to examine how the radius of the roundabout 

affects the swept path of HCT combinations for various exit angles in a roundabout. Similar 

research has been performed by Kharrazi et al. (2017) and Bruzelius and Kharrazi (2021). Some 

other prior research like (Pecchini and Giuliani, 2013), relies on test track trials and draws 

similar conclusions as in simulation-based studies. Contrary to LSSP, TS is briefly studied and 

mostly through simulations. For example, De Saxe et al. (2012) explained the influence of 

wheelbase on TS using 3 degrees of freedom low-speed turning model. Isted et al. (2022) 

performed simulations to demonstrate the variation of TS with the radius of turn. Although 

LSSP and TS have been studied through simulations and experiments in regulated 

environments, the assessment of these vehicles in roundabouts using naturalistic driving data 

(NDD) is missing. 

NDD refers to the data source that contains measurements collected unobtrusively as the vehicle 

is driven in real-world traffic (Bärgman, 2016). The use of vehicle data in real traffic ensures a 

realistic evaluation of the behaviour of these vehicles in roundabouts. It offers an opportunity 

to understand the impact of infrastructure on the vehicle using real data, which has been 

previously evaluated through simulations. This paper assesses the impact of the design 

parameters of a roundabout, specifically the radius of the roundabout, on LSSP and TS. It gives 

an idea about the efficacy of these vehicles in different roundabouts. Moreover, the vehicle data 

is also used in this paper to get an insight into the driver’s behaviour in roundabouts, such as 

their steering patterns and speed variation while navigating the roundabouts. The steering signal 

is further utilized to estimate the cognitive workload of the involved drivers.  
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The contributions of the paper are (1) Driver behaviour analysis in the roundabouts, i.e., how 

the drivers steer and vary the speed of an A-double combination in the roundabouts, (2) 

Evaluation of the cognitive workload of the drivers of this combination in the roundabouts, and 

(3) Estimation of the influence of the roundabout’s radius on LSSP and TS using NDD.

2. Data Collection

The data collection for this study is done by Volvo Trucks. OxTS RT3000 sensor package with 

Differential Global Positioning System (DGPS) and Inertial Measurement Units (IMU) is used, 

which has a given positional accuracy of 1 cm under a clear sky (OxTS, 2020). These sensor 

packages are installed on the tractor and the last semi-trailer of two A-double combinations, 

which are driven in a naturalistic setting.  One of the vehicles makes multiple trips between 

Gothenburg and Malmö (270 km), located in the south of Sweden whereas the other vehicle 

drives between the Piteå harbour and the city (20 km), located in the north of Sweden. The 

DGPS and IMU measurements are recorded at a frequency of 100 Hz. The measurements 

include positions, translational/angular velocities and accelerations of both the tractor and the 

last semi-trailer, and the steering wheel angle. 

Figure 1 – Vehicles used for data collection.  

Left: Piteå harbour-City, Right: Gothenburg-Malmö. 

3. Extraction of roundabout crossings

The approach followed for extracting the roundabout crossings partially aligns with the 

methodology developed by Jorge (2012). The real-world positions of roundabouts are fixed, 

and their geographical locations can be obtained from open street maps (OpenStreetMap 

contributors, 2022). Since the area spanned by the vehicles’ travel routes is large, it is time 

demanding to explore the routes manually and find out the locations of roundabouts. Hence, 

automatic identification of these locations is preferred. The capabilities of open street maps 

(OSM) are used to identify all the roundabouts in all the routes that the vehicles drive through. 

With the locations of all the roundabouts known, the next step is to identify the intervals in 

NDD when the vehicle passes through a certain roundabout. A simple algorithm is formulated 

that finds the interval in which the tractor’s coordinates lie within the boundaries of a 

roundabout. The Python codes used for identifying the roundabouts from OSM and extracting 

the corresponding intervals from NDD (where the vehicle has crossed the roundabouts) can be 

found at https://github.com/abhijeetbehera97/Roundabout-extraction.git. 

https://github.com/abhijeetbehera97/Roundabout-extraction.git
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   Figure 2 – Exit directions in a roundabout. 

 

                                                 
  (a) R9 : Large Roundabout (R30)                      (b) R6 : Medium Roundabout (R24) 

                                                                                      
       (c) R3 : Drop-form Roundabout (R15)         (d) R1 : Common Swedish Roundabout (R11)                                                                        

Figure 3 – Examples of extracted roundabout crossings along with the vehicle’s path. 

All the roundabout crossings of the considered vehicles involve four exit directions. Hence, 

they are categorized as: Right, Straight, Left and making a U-Turn. Note that these directions 

align with the driving practice (Right-hand driving) in Sweden. Figure 2 depicts a roundabout 

that the vehicle navigates in its travel route. An interval of angles is employed for categorizing 

each of the manoeuvres in a roundabout, as shown in Figure 2.  
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A total of 152 roundabout crossings are identified from NDD. These crossings involve 9 

roundabouts, 2 of which are from the route in the north and 7 from the route in the south. 

Furthermore, the crossings consist of 130 instances of vehicles going straight, and 11 cases each 

for right and left turns. Note that there are no U-Turns made by the vehicles. Out of all cases of 

vehicles going straight through the roundabout, 92 are from a particular roundabout in the north; 

the roundabout is shown in Figure 3 (a). The remaining roundabouts fall into one of the other 

main types of roundabouts depicted in Figure 3. The nomenclature of the roundabouts is 

consistent with the description given by Larsson et al. (2022). 

The roundabout’s radius is obtained by fitting a circle to its inner ring. From here onwards in 

this paper, the inner ring’s radius is denoted as the roundabout’s radius for convenience. It may 

be noted that the inner ring is not strictly circular in all the roundabouts. Hence, the calculated 

radius may not be exact. Table 1 shows the list of roundabouts with their respective radius. For 

the sake of simplifying the analysis, roundabouts with radius values close to each other are 

grouped into one group. All the roundabouts have 2 lanes and the width of each lane ranges 

between 3 m and 4.5 m.  

Table 1 – List of Roundabouts that the vehicle traverses in its route. 

4. Driver’s behaviour analysis and Cognitive workload

Figure 4 presents the variation of the steering wheel angle (𝛿) and speed (𝜐) with the position 

(s) for the roundabouts depicted in Figure 3. The solid line (baseline) represents one crossing

of a roundabout. A ‘0’ in the abscissa represents the position where the tractor enters the

roundabout’s ring for this case. The shaded area represents the deviations of the remaining cases

with respect to the baseline. The standard deviation of the steering wheel angle is the largest in

the ring area. It ranges from 5o (~ 2 % of the baseline) in Figure 4 (f) to 35o (~ 17 % of the

baseline) in Figure 4 (c). With respect to the speed, the standard deviation is the largest in the

region before entering the ring. It varies from 3 km/h (~15 % of the baseline) in Figure 4 (d) to

8 km/h (~ 40 % of the baseline) in Figure 4 (a). Although there is a substantial variation in the

standard deviation of the driver responses, the response patterns are similar for a given travel

direction in a roundabout.

It is evident from some of the roundabouts, for example, R9 and R1, that the drivers perform a 

series of manoeuvres to traverse the roundabout. It involves counter-steering, steering, and 

counter-steering in succession. The counter-steering manoeuvres create space for the trailing 

units of the vehicle while entering and exiting the ring.  

Case Inner Ring Radius [m] Outer Ring Radius [m] Grouped Radius 

R1 11 18.5 R11 

R2 12 19.5 

R3 15 22 

R15 R4 16 25 

R5 16 25 

R6 24 33 

R24 R7 24 33 

R8 25 34 

R9 30 38 R30 
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       (a) Straight in R9 (R30)                 (b) Right in R6 (R24)                  (c) Left in R3 (R15) 

     
    (d) Right in R2 (R11)                 (e) Straight in R1 (R11): P1          (f) Straight in R1 (R11): P2 

Figure 4 – Driver inputs. Dashed lines show the ring intervals. Black and red solid lines 

indicate the baseline for steering wheel angle and speed respectively. The deviations from 

the baseline for steering wheel angle and speed are shown by the shaded area in green and 

purple respectively. P1 and P2 in (e) and (f) denote crossings in opposite directions as 

shown in Figure 3 (d). 

It can be observed from the figures that the speed of the vehicle decreases as it enters the ring. 

The decrease can be attributed to the entry angle of the roundabout and the traffic in the ring 

(Kennedy et al., 2007). Thereafter, the speed increases as the vehicle travels through the ring. 

The increase may be attributed to two factors. First, a higher radius of curvature at the 

roundabout's exit and ring, compared to the entry, and second, the vehicles inside the 

roundabout have the right-of-way over the drivers entering the roundabout.  

Figure 5 (a) shows box plots of the entry and exit speeds in the roundabout crossings. The entry 

and exit speeds are the speed of the tractor when entering the ring and the speed of the trailer 

when exiting the ring. On a closer look at each of the box plots, it can be observed that the 

median of exit speed is more than twice the median of the entry speed. It means that irrespective 

of the travel direction, type and radius of the roundabout, the vehicle speeds up approximately 

by a factor of 2 or more as it traverses through the roundabout. Furthermore, the medians for 

both the entry and exit speed cases increase with the radius of the roundabout. This is expected 

as with an increase in radius, the path becomes less curvy, and consequently, the entry and exit 

speeds of the vehicle increase. A slightly high median for the 11 m roundabout (R11) is obtained 

due to a less curvy path P1, which allows the vehicle to exit the ring at a high speed.  
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Drivers use a combination of speed and steering inputs to navigate in a roundabout, which 

results in an increased cognitive workload for the drivers in the roundabout compared to usual 

straight-line driving. Steering Reversal Rate (SRR) is employed to measure the workload in the 

roundabouts. SRR represents the number of times per minute that the steering-wheel direction 

is reversed by a minor adjustment greater than a specified threshold. To calculate SRR, the 

approach described by Markkula and Engström (2006) is employed. A low-pass Butterworth 

filter with a cut-off frequency of 1 Hz and a threshold of 3 degrees is used to eliminate the effect 

of normal angular variability in the steering wheel signal caused by noise. The threshold is 

considered from a previous study by Pecchini et al. (2017), which estimated SRR for a heavy 

vehicle in a roundabout. 

 (a)                 (b)         (c) 

Figure 5 – (a) Entry and exit speeds obtained in the roundabouts. (b) SRR in different 

roundabouts for straight crossings. (c) SRR for two different travel directions in R2 (R11). 

Figure 5 (b) displays the SRR with roundabouts involving straight crossings. The roundabout 

in the north has the lowest median amongst all others, indicating the least workload on drivers. 

There could be two reasons for this observation. Firstly, the roundabout in the north has a high 

radius, resulting in a less curvy path for vehicles and making it easier for drivers to navigate. 

Secondly, the traffic density is lower in the north compared to the south, resulting in a smaller 

number of adjustments needed for the vehicle to manoeuvre in the roundabout. The traffic 

density can also be a reason why the medians of SRR in the south are only mildly decreasing 

despite a considerable increase in the radius of the roundabout.  

Figure 5 (c) represents the SRR for two travel directions in the roundabout R2. The median 

associated with the right turn is more than the straight crossings, indicating a higher workload 

with right turns. This observation is concurrent with the previous study by Pecchini et al. (2017) 

on a heavy vehicle. It concluded that a right turn is more workload intensive than a straight 

crossing in a roundabout. 

5. Performance analysis

This section is divided into two parts. The first part deals with analysis using the swept path 

and the second part involves tail swing analysis.  
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a. Swept Path Analysis

The trajectories of the vehicle are different for different travel directions. It results in the vehicle 

occupying a different amount of space (swept width) at different locations of the roundabout. 

Figure 6 (a) shows the variation of the swept width with the position along the roundabout for 

a sample case for each travel direction. The corresponding vehicle paths are displayed in Figure 

6 (b). A ‘0’ in the abscissa represents the location where the trailer enters the ring.  

     (a)      (b) 

Figure 6 – Swept width for different travel directions in R2 (R11). Upward arrows in (a) 

are at the locations where the vehicle exits the ring for a given travel direction. 

Three peaks in the swept width are observed when the vehicle is going straight or turning left 

in the roundabout. The magnitude of the peak is highest at the ring, followed by the peaks 

obtained while entering and exiting the roundabout. The difference in the magnitude of the 

peaks is substantial for the cases where the vehicle is turning left compared to going straight in 

the roundabout. 

The entry angle of a roundabout can have a significant influence on the swept path of the 

vehicle. Among all the analysed roundabouts in this study, the roundabout R9 (radius of 30 m) 

has the highest entry angle. Hence, R9 is chosen for further analysis. The peaks (maximum 

swept width) from the entry, ring and exit regions are collected for all the crossings in R9 and 

displayed in Figure 7. In 47 out of 92 cases, the peak at the entry is more than that of the ring. 

This is due to a considerably large counter-steering required to negotiate the high entry angle 

of the roundabout, see Figure 4 (a). Since such an entry angle is not present in the other 

roundabouts, the swept width’s peak at the entry is less than the peak at the ring for them. 

Figure 7 – Maximum swept width at entry, exit and ring in R9 (R30). 
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Figure 8 shows the variation of the Low-Speed Swept Path (LSSP) with the instantaneous radius 

for the radii mentioned in Table 1. LSSP, as introduced earlier, is the maximum width of the 

swept path. All the displayed quantities are calculated when the vehicle is at the ring. This 

allows a fair comparison with the previous research where the LSSP is calculated at the ring. 

The instantaneous radius is the radius of the path traced by the tractor’s outer wheel averaged 

over 0.5 m around the position where the maximum of the swept width is obtained. 

(a) Straight (b) Left (c) Right

Figure 8 – LSSP in the ring for different travel directions in different roundabouts. 

It is observed from Figure 8 (a) that LSSP, irrespective of the radius of the roundabout, 

decreases with the increase in instantaneous radius. The reason can be attributed to the path of 

the vehicle that becomes less curvy with the increase in the instantaneous radius. Consequently, 

it decreases the swept path of the vehicle. With a lower radius roundabout, the vehicle’s path in 

the ring can be concentric or eccentric to the inner ring. Hence, the instantaneous radius 

obtained in such roundabouts varies substantially, for example, look at 15 m radius (R15) cases 

in Figure 8 (a). Note that the large variance seen in the LSSP of the 11 m radius roundabout 

(R11) can be due to the different curvature of paths traversed by the vehicle, see Figure 4 (e) 

and Figure 4 (f). One path (P2) is curvier than the other (P1).  With an increase in the radius of 

the roundabout, for instance, with the 30 m radius cases (R30), the vehicle’s path becomes more 

concentric. The instantaneous radius increases and the variance in it decreases.  

Figure 8 (b) shows the variation for all the cases where the vehicle turns left in the roundabout. 

LSSP decreases with the increase in both the instantaneous radius and the roundabout’s radius. 

It may be noted that the vehicle’s path must become concentric with the inner ring to undertake 

a left turn in a roundabout. Hence, the instantaneous radius in all the cases is within two lane 

widths of the roundabout’s radius. Figure 8 (c) depicts the variation for the cases where the 

vehicle turns right in the roundabout. There is not any notable trend observed with LSSP and 

instantaneous radius.  

b. Tail Swing Analysis

Tail Swing (TS) is mostly observed with sharp turns like in a conventional intersection. The 

roundabout facilitates a smooth turn for the vehicle. Hence, TS is insignificant with almost all 

the roundabouts except one, R9. This roundabout has rather a high entry angle that forces the 

vehicle to make a sharp manoeuvre at the entry of the roundabout. This introduces a swing out 

of the rearmost corner of the trailer. Figure 9 displays the variation of the tail swing with the 

instantaneous radius at the entry. Although an inverse relationship is expected between the 
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quantities (Isted et al. 2022), it is difficult to conclude such a trend from the data. The reason 

can be inaccuracy in the sensors, specifically for the cases where the magnitude of TS reaches 

the accuracy limits of the sensors.  

Figure 9 – Tail Swing in R9 (R30). 

6. Comparison with previous research

Figure 10 compares the results presented in this paper with previous research by Larsson et al. 

(2022), where simulations on an A-double, with approximately the same dimensions as vehicles 

considered for this paper, are performed.  Manoeuvres are simulated in roundabouts which are 

considered rings, with exit angles of 90o, 120o and 180o. The angles, 90o and 120o, correspond 

to left turns in this paper, see Figure 2. Hence, all the left turns are considered for comparison 

with the LSSP, and the instantaneous radius obtained from the ring. A coherence is observed 

between the results presented in this paper and the previous research. This indicates that the 

simulations are representative of the results obtained in this research.   

Figure 10 – Comparison with Larsson et al. (2022) for left turns. The red line shows the 

required LSSP for 25.25 m vehicle combinations in Sweden, in a roundabout with an 

outer radius of 12.5 m. 

Table 3 gives an overview of the LSSP and TS obtained from this research with the standards 

in Sweden and other countries. The maximum LSSP achieved in this research is 7.7 m, with an 

instantaneous radius of 12.5 m for a left turn. By extrapolating this value using simulations (see 

Figure 10), an LSSP of 11.2 m is obtained for a 180o turn in an outer radius of 12.5 m, which 

is larger than the allowable LSSP of 10.5 m for 25.25 m vehicle combinations in Sweden. As a 

result, extra steerable axles would be required for these vehicles to conform to the existing 

LSSP requirements. 
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 Table 3 – Overview of the PBS values from different countries (Kharrazi et al., 2013) 

PBS Measures Australia1 New Zealand Canada2 Sweden NDD 

LSSP [m] 

7.4, 8.7, 

10.6, 13.7 

(90o turn of 12.5 

m outer radius) 

7.6 

(120o turn of 12.5 

m outer radius) 

8.5

(90o turn of 11 m 

outer radius)

10.5 

(180o turn of 12.5 

m outer radius) 

7.7 

(Left turn with an 

outer radius of 

12.5 m in R2)

TS [m] 

0.3, 0.35, 

0.35, 0.5 

(90o turn of 12.5 

m outer radius)

0.3 

(90o turn of 12.5 m 

outer radius)

Not regulated 

in Canada 
Not regulated 

in Sweden3 
0.4 

(Straight with an 

outer radius of 

24.5 m in R9)

[1] Different values for LSSP and TS in Australia correspond to different access levels.

[2] Offtracking is considered in Canada instead of LSSP. A trackwidth of 2.5 m is assumed to obtain LSSP.

[3] Not regulated in Sweden (Kharrazi and Karlsson 2015). However, an EU directive exists which suggests a maximum

tail swing of 0.8 m for single-unit vehicles in a roundabout with an outer radius of 12.5 m (ECE 1997).

7. Conclusions

The performance of A-double is assessed in 9 roundabouts with the inner radius varying from 

11 m to 30 m. The following conclusions are made from the analyses of the data: 

a. While navigating a roundabout, the standard deviation of the steering wheel angle is the

largest in the ring area.

b. The vehicle speed increases with the radius of the roundabout. Speed is mostly higher

at the exit than at the entry of the roundabout, see Figure 5 (a).

c. The right turns are more workload intensive than straight crossings, see Figure 5 (c).

d. The entry angle of a roundabout can have a significant influence on the swept width,

see Figure 7.

e. Irrespective of the roundabout’s radius, the LSSP of the vehicle decreases with the

instantaneous radius for the straight and left turns, see Figure 8 (a) and Figure 8 (b).

f. The path of the vehicle is more concentric in a left turn compared to going straight.

Hence, the instantaneous radius for the left turn varies less than that of going straight

for a given roundabout, see Figure 8 (a) and Figure 8 (b).

g. The TS is observed in only one roundabout with a high entry angle. No conclusions can

be drawn about the trend due to their magnitudes reaching the sensor’s accuracy limits.

h. The considered vehicle will need extra steerable axles to satisfy the existing LSSP

requirement for 25.25 m vehicle combinations in Sweden.
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