Autonomous Reversing of Heavy Goods Vehicles

Amy Rimmer, Andrew Odhams, David Cebon

Cambridge University

International Symposium on Heavy Vehicle Transport Technology Setting Future Standards HVTT12 Stockholm, Sweden, 16-19 September 2012

Presentation Outline

Objectives and Background

Modelling and Simulation

Stability Analysis

Conclusions and Future Work

Project Objective

Design an autonomous controller for reversing long combination vehicles

Long Combination Vehicles (LCVs)

What is a Long Combination Vehicle?

Long Combination Vehicles (LCVs)

• What is a Long Combination Vehicle?

Why Long Combination Vehicles?

Performance Measure	Reduction due to LCVs
Freight movements and overall truck-kms	44%
Overall shipping costs	29%
Fuel consumption / greenhouse gas emissions	32%
Road wear	40%

Long Combination Vehicles (LCVs)

• What is a Long Combination Vehicle?

• Why Long Combination Vehicles?

How are LCVs reversed now?

Modelling

Tractor

B-link trailer Semi-trailer

Desired path

 $\delta = f(y, \Gamma_1, \Gamma_2, L_p, K)$

Stability Analysis

CVDC

Stability on a Curve

• Maximum preview distance ~ R

B-Double: Damping Ratio Comparison R = 10

Straight Line

Stockholm 2012

Conclusions

- Controller stable for up to three trailers
- Stability decreases as number of trailers increases
- Trade-off between settling time and damping
- Control parameters can be tuned using straight line analysis

Future Work

• Develop alternative controllers

Implement controller on test vehicle

