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For linear systems, simple and efficient methods of analysis are readily available as well as analytical solutions 
and the local behaviour of these systems may be extended to the global system behaviour. On the other hand, the local 
behaviour of non linear systems may never be generalized to the global state space and the analytical solution of the 
equations of motion are rarely available. Also, there exist no universal principle under which non linear systems may 
be treated and which may claim a successful analysis of any of these systems. 

In this work, the dynamic stability of non linear system representing tractor semitrailer vehicles is studied on 
the base of a qualitative problem approach. Statting with Cl small restricted stability domain obtained by using the 
Hamiltonian of the system as an initial Lyapunov function, and following a direct search procedure with the 
unconstrained minimization technique (S.U.M.T.), the stability domain of this vehicle system was successfully 
maximized for quadratic type Lyapunov functions and for the proposed search method. 

1. INTRODUCTION: 

Tractor semitrailer have caused a large number of 
accidents and often with many resulting death and serious 
injuries. Consequently, applied research has been addressed 
to this sector of activities and in particular to the area of 
simulation and dynamic stability. Over the last decades, 
many studies were subsidized for the purpose of identifying 
the phenomenon of dynamic instability and the system 
parameter that leads to such instability, such as jackknifing 
and snaking. 

Results of studies implying linear models (Jindra 
[1963a, 1963b], Hales [1963], Ellis [1966] and schmid 
[1967]) have been confirmed experimentaly results so long 
as perturbations which occurred around the stable 
equilibrium point were of small amplitudes. Meanwhile 
these linear models were found totally deficient with respect 
to non oscillatory divergent type of motion, jackknifing, and 
also for of the divergent oscillatory motion known as 
snaking. 

Mikulcik [1968, 1971] was one of the first 
investigators to adequately model the nonlinear system of 
truck semitrailer and account for jackknife following step 
steer or braking manoeuvres. Among other important 
contributions, are Ellis [1963], Susmihl [1972] for 
identification and indirect sensing of tractor jackknifing, 
Ervin and Yoram [1986] for the influence of the dimensions 
and weights of these vehicles on their dynamical 
performance, and for their sensitivity to such variations. 
Eshleman and al. [1973] have presented one the most 
elaborate study in this field. In their investigation, the 
dynamic behaviour of these articulated vehicles was 
predicted through the use of numerical integration and the 
Lyapunov method of the first kind. They favourably 

compared their finding with experimental measurements. 
They also compared various methods for generating 
Lyapunov functions. 

A third group of studies deals with the entire 
domain of stability of these vehicles. Olusola and Linkins 
[1975], used Lyapunov's second method to study the 
stability of a vehicle moving on a straight road. Later Sachs 
and Chou [1976], employed the same method to establish 
the stability domain of an automobile. Singh [1978, 1980] 
presented one of the most interesting study based on the 
second method of Lyapunov. He used the Hamiltonian of 
the system as a quadratic LyapuIlov function and obtained 
a domain of stability, which turn out meanwhile to be 
smaller than the domain established through numerous and 
lengthy numerical integration of the motion equations 
within the whole state space following the try and error 
strategy. 

In this particular study, a search strategy is devised 
through which a particular quadratic Lyapunov function is 
determined that will maximize the size of the stability 
hypervolume without having to perform the very time 
costly procedure of integrating the motion for the numerous 
cases of parameter sets. The actual adopted strategy and the 
type of Lyapunov function were suggested through the 
results obtained by Eshleman and al [1973]. In their study, 
they claim that second Lyapullov method represents the best 
available technique for studying the road vehicles stability 
by a Ilon linear model. Among the different schemes for 
generating the Lyapunov functions, they consider that the 
quadratic estimate and the Zubov integration as best fitted 
for a numerical optimization of the domain of attraction. On 
the other hand, they state that the quadratic estimate leads 
to better result than Zubov's method beeing more precise 
and also taking less time to converge. 

338 Heavy vehicles and roads: technology, safety and policy. Thomas Telford, London, 1992. 



o .... 
Xo 

MT = 6803 kg. Ms = 29483 kg. IT = 19697 kg.m2 

Is = 422235 kg.m2 bI = 1.56 m b2 = 1.91 m 
b3 = 1.55 m b4= 6.27 m b5= 3.66 m. 

Figure 1: Articulated vehicle model. 

2. MODELING: 

In the present model, (figure 1), the tractor and 
semi trailer units are articulated at the fifth wheel through a 
vertical axis. The tractor is assumed to travel at a constant 
forward velocity on a plane uniform horizontal road with a 
constant radius of curvature. Generalized coordinates 
involved are the tractor forward motion, its lateral 
displacement and the yaw angle of both units. Pitch and roll 
angles are neglected. Alignment torques and forces resulting 
from multiple wheels pairs and multiple axeles bogies are 
not considered in the present analysis. 

3. EQUATIONS OF MOTrON: 

To facilitate the writing of the motion equations, two 

cartesian coordinate systems, (C, i: y: Z) and (Cl'~' y;, Z;), 
are attached to the tractor and the semitrailer respectively. 

Applying Newton's second law and the theorem of 
the angular momentum to each unit of figure 1, and 
accounting for the 5th wheel constraints, the following 
differential equations of moii(m can be easily derived: 

(Mr+Ms)Vy-Msb/j)J -M/Jii)2cOSY= 

-(Mr+Ms)VxffiJ +M,b4ffi;siny+(Fj +F2)coso 

-Msb3 Vy+(I1'+Msb;)Wt +/vI,b3b4wzcosy= 

M sb3 VXffit-MSb3b4ffi2siny+bj(FI +F2)coso 

-b2(F3 +F4)-b3(Fs +F6)COSY+C~ 

(1) 

(2) 

VEHICLE SAFETY 

-M sb 4 V yCosy+Msb3b 4wjcosy+(ls +Msb;)ooz 

=Msb4 V xffitcosy-Msb4 VyffiJsiny+M sb3b4ffi1siny (3) 

-(b4 +bs)(Fs+F6)-Cf 

Where the articulation angle between the longitudinal axis 
of both units may be obtained through the integration of: 

(4) 

Forces Fi , called the side slip forces. are build up at 
the interface between the road and the tyre. They either 
balance external forces applied to the axles or else the 
inertia forces encountered during the lateral motion of the 
vehicle. These forces arises while a certain contact area will 
develop between the tyre and the road and a slip an~le w~ll 
be encountered when they are applied. The relatIOnshlp 
between the lateral forces Fi , the vertical load W i and t~e 
slip angle ai for any tyre will depends on the tyre elastlc 
structure, the shape of the contact zone, the state of the 
road wear, the coefficient of friction and many other 
factors. Many empirical formulas have been proposed to 
compute these forces. A very good formula. approximating 
the real tyre behaviour has been proposed by Ellis [1969], 
expressing the lateral forces as a non linear cubic type 
polynomial in term of the side slip angle as follows: 

(5) 

where the coefficients Cn and Ci3 are taken as constant. 
In this actual study, a modified formula proposed by 

Eshleman & al. [1973], was preferred which accounted for 
measurements obtained with Hi-Miller 10.00-20 tyres. This 
formula reads as follows: 

-1.5J.lZ. ( a; ] F. = ' , a.--, ---, 2 
ami ami 

where 

0.35Zi 

J.li = 1. - 30258. 

and 

(6) 

(7) 

,,~ . 0.155707+. + 30~~8.) (8) 

where, for each tyre i, Zi represent the quasi-static vertical 
loading and ai' the slip angle expressed as follows: 

(front tractor wheels) (9) 

Vy - b2 ffi! a =a = ___ _ 
3 4 V 

x 
(rear tractor wheels) (10) 

and for the semitrailer wheels: 

Vxsiny+(Vy -b3ffij)cosy-(b4 +bs)ffiz 
as=a6 I ). 

Vxcosy-(Vy- )3ffi\ SlIlY 
(11) 
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Assuming there is no anti-jackknife device at the 
fifth wheel, (Cr = 0.), that is, there is no motion restraint 
around the axis of articulation between the two units, then 
the general motion equations (1)-(4), with the equations can 
be written as follows: 

[A](X} = {F(X)} 

where 

(MT + Ms) 

[A] 
-M~3 

-Msb4cosy 

0 

{X} = (Vy , 001, 002, y?' 
and where 

-Msb3 

2 
(IT + MSbJ ) 

MSb]b4cosy 

0 

(12) 

-MP4COSY 0 

Msb3b4cosy 0 

2 
(Is + M~4) 0 

0 1 

{F(X)} = (FiX), FiX), FiX), FlX)F are the right hand 
members of equations (1) to (4) in this order. Since the 
determinant of the matrix [A] is always positive, [Ar l exist 
and (12) is transformed into: 

(13) 

4. STABILITY OF THE VEHICLE SYSTEM: 

In this section, two aspects of the articulated 
vehicles will be treated (a) the stability in a close 
neighbourhood of the equilibrium points and Cb) the 
determination of the boundary of the domain of attraction 
around a stable equilibrium point. 

The solution of the equation {F (X)} = {O} for 
{X} in R4 yields an infinity of solutions that is an infinity 
of dynamic equilibrium points commonly called "singular 
points" for the system described by equation (13). 

In order to detennine the vehicle state in the 
neighbourhood of one of the equilibrium points {X.}, a 
Taylor expansion of the equation set (13) is performed in 
the following form: 

{y} = [B]{y) + {H(n} (14) 

where 

{Y} = {X} - {X.l 

and [B] is the jacobian matrix of the system (13) evaluated 
at the considered equilibrium point {Xe }. According to the 
first Lyapunov method, the system would be stable in the 
neighbourhood of {Xe } if and only if [B] possesses 
eigenvalues with negative real parts. A list of some 
equilibrium point of the system (13) appear in table 1. They 
have been computed for a longitudinal velocity of 75 km/h, 
a steering angle of the front wheels of 3° and for the state 
vector {X} T in the range (-lO.,-lO.,-lO.,-n} T and 
{lO.,IO.,lO.,n }T. The numerical integration of the equations 
(13) in the neighbourhood of the points II and III of table 
1 has made it possible to represent the behaviour of the 
system in the state space of the vehicle with respect to 
small perturbation around a stable and unstable point of 
equilibrium. The results appear in figure 2 and 3. 
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Figure 2: Trajectories of motion projected on (Vy, 001) and 
(OJz, y) in the neighbourhood of a stable point. 
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4.1 DOMAIN OF STABILITY: 

The ensemble of perturbation {X} for which the 
system trajectories return to a close neighbourhood of the 
equilibrium state represent the domain of asymptotic 
stability. Apart from the numerical integration process 
which turns out to be a trial and error strategy process, a 
very time consuming one indeed, as soon as the number of 
number of independent coordinates exceeds two, there exist 
no other systematic method that will determine the 
boundary of the attraction domain. Accordingly, many of 
investigators have used the second method of Lyapunov to 
determine the extent of the stability domain. This method 
consist in the search of a scalar positive definite function 
V(Y), called Lyapunov function, with continuous partial 
derivatives inside a domain Q which contains the 
equilibrium point {Ye} = {O} and such that: 

V(y) > 0 

V(O) = 0 

V(y) < 0 

V(O) = 0 

V{y} *- (O) E Q 

V{y} *- (0) E Q 

(15) 

(16) 

(17) 

(18) 

For the purpose of this investigation, a quadratic function 
of the following type was selected: 

V(Y) = {y}T[p]{y} (with [P] symmetric) (19) 

where the corresponding domain of vehicle stability is 
given according to the above theorem by: 

(20) 

THEOREM: (Shields [1973]) 
Let Ey be the set 

Ev = { {y} / V( Y) = O. ; {y} *- {O} } 

then the region of asymptotic stability indicated by 
the Lyapunov function V(Y) of (19) is given by D 
where: 

D = { (Y) / V (y) < VmiIl } 

and where: 

Vmin = min(V(y) (Y) E Ev 

Table 1: List of some singular points. 

Sing. Coord. of the Eigenvalues of System 
point sing. point matrix [B] state 

I -9.128, -3.854 2.593'Fi(11.388) unstable 
-3.854, -1.344 11.506, 2.525 

II 5.884, -0.319 5.849, -4.721 unstable 
-0.319, -0.149 -0.708, 1.769 

1II -1.103, 0.168 -2.560+i( 3.209) Stable 
0.168, 0.056 -1.l95+i( 1.471) 

IV -1.457, 0.187 -2.633'Fi( 2.466) unstable 
0.187, -0.230 4.519, -1.146 

VEHICLE SAFETY 

The derivative of V(Y) is given by: 

V(Y) = (Yf[p]{ y) + {Yfrp]{ Y} (21) 

Replacing (14) into (21) and taking into account that 
[P] is symmetric, it follows: 

V(Y) = -{Yf[Q]{Y} + 2(Y)T[p]{H(Y)} 

with: 

[Q] = _([B]T[p] + [Pl[B]) 

(22) 

(23) 

From the preceding section, it is known that the 
system (14) is stable in the neighbourhood of point III of 
table 1. It may be therefore be concluded that the time 

derivative of the Lyapunov function, V(y) is negative 
definite in at least a small confined region around the 
eq uilibrium point (Ye) = (O). This result may be confirmed 
by taking [Q] positive definite and {Y} small enough to 
bring the quadratic term in (22) predominant. Therefore the 
conditions (16) to (18) are verified. The condition (15) is 
ipso facto satisfied since the selection of [Q] as a positive 
definite matrix implies the positive definiteness of [P] (The 
inverse proposition does not hold)(see Lasalle & Lefschitz 
[1961]). 

Therefore, for every symmetric positive definite 
matrix [Q], the problem consist in solving (23) for [P] and 
subsequently minimizing the following function: 

min(V(Y) 

) (24) subject to 

V(Y) ::; 0 

The solution of this constrained problem can be 
obtained with the help of the sequential unconstrained 
minimization technique with which an estimate can be 
achieved for the domain of stability corresponding to [Q] 
and whose volume is proportional to that of the 
hypervolume (Y)T[p](Y) = \!min which is given by: 

Vol - 11: ( V1: in ~ 
Det(P) ) 

(25) 

Then, in order to maximize the stability domain, it 
is sufficient to generate a set of positive definite matrix [Q] 
and to select the particular one which yield the largest 
volume (25) while satisfying the conditions (24). 

4.1.1 Algorithm for generating the s.d.p. matrices [0]: 

A simple way would consist in randomly generating 
matrices and selecting among them those which pass the 
test of positive definiteness. This procedure is very time 
costly and yields no useful information for optimizing the 
search and is therefore simply not efficient. Then the 
following procedure has been taken in this investigation. 
The matrix [Q] is written as a matrix product as follows: 

[Q] = [L][LY (26) 

where [L] is a lower triangular matrix. From this 
expression, the volume (25) may be maximized over the 
field of the [L] matrices rather than the field of [Q] 
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matrices. Indeed the positive definiteness of [Q] matrices is 
guaranteed for all non singular matrix [L]. Starting with the 
matrix: 

L1 0 0 0 1 0 0 0 

L2 L3 0 0 0 1 o 0 
[L] = (27) 

L4 L5 L6 0 0 0 1 0 

L7 L8 L9 Lw 0 0 0 1 

the vector ~ = (L1' ~, ..... ,Lw? and the incrementation 
bases B(el'ez, .. ·,. .. ,e10 ) and BI(itl'itz,· .. ,. .. ,itlO) are formed and 
an increment step Po is selected. The components eij and u1j 

of the respective vectors e; and it; are given by: 
eij = 1 (for j S; i) and eij = 0 (for j > i) 
uij = 1 (for j = i) and eij = 0 (for j :1: i) 

Then the procedure continues as follows: 

r) For i=l, the volume (25) is evaluated for (~-Poe,),~ 

and(~+Poe,) in order to determine the direction in which 

the incrementation of ~ will increase the volume estimate 

of stability domain. Subsequently ~ is incremented in this 

direction with the step of Poel until the best value ~l is 
reached, that is, when the incrementation process can no 
longer improve the value of the volume (25). 

2°) This procedure is iterated, taking ~ = ~-l ([L]=[Li_1]), 

letting i vary from 2 to 10 in order to obtain the vector5fo 
(the matrix [LoD which maximize the volume (25) with the 
step Po. 

3°) Halving Po, and taking ~ = ~o as a starting vector, 

steps 1 and 2 are repeated, yielding a new vector5fo 
corresponding to a maximum volume of (25) for Po and 
PJ2. 
4°) The procedure is brought to a stop when the 
incrementation step falls below a minimum preestablished 
value Pmin• 

5°) Repeating steps 1 to 4 with the incrementation base 

vectors it; of B1, ~ ([LmaJ) was finally reached which 
maximized the volume (25) for the selected search method. 

5. RESULTS: 

The domain of stability obtained with this procedure 
is shown in figure 4 in the space (Vy, ID1, y). The multi­
dimension volume is now represented by plane 
intersections. In figure 4, are shown intersections of this 
volume with plane y = constant that is, for articulation 
angle y. 

On figure 5, the stability domains for y = 3.23° are 
shown as obtained with three different approaches i) with 
numerical integration of motion equations ii) the initial 
domain as obtained with the Lyapunov method for [Q] = [1] 
and iii) The final volume as obtained with the above 
maximization procedure. 

It is worth insisting here, that to each of the constant 
angle y of domain on figure 4, the yaw velocity of the 
semi trailer and of the tractor have been set equal. 
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6. EXPERIMENTAL VALIDATION: 

The ilieoretical study is currently validated with 
small scales articulated physical models such as shown in 
figure 6. Small scale experimentation defmitely brings a lot 
of very interesting advantages; first, these physical models 
are fairly inexpensive. Second, there is little concern for 
safety. Jackknifing may be produced repeatedly with no 
harm to the model or even the instrumentation. Third, a 
large variety of tyres are available for standard type models 
and the tyre properties can be measured quite accurately on 
small inexpensive dynamorneter benches. Also, these tyre 
measurements are carried fairly rapidly covering linear and 
non linear range of the slip angle up to ilie maximum 
friction ellipse, and for a range of normal loading. For the 
lateral dynamic validation, data such as inertia, dimensions 
and masses are obtained readily. In full scale 
experimentation, one has to rely on scarce published tyre 
and vehicle data. 
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Figure 6: Small scale experimentation vehicle. 
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