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Abstract 

 

This paper presents a cost effective approach for the cooperative learning of the quality of dirt roads 

in intensive hauling environments. The paper also introduces an efficient method to synthesize a 

3D description of the roads based on commercial 2D laser and low cost dead reckoning resources. 

The result of the estimation process is a global belief about the road conditions, which is maintained 

by a fleet of mobile agents (e.g. mining trucks). Practical results obtained in realistic environments 

demonstrate the benefits of the system operation, allowing the vehicles to infer, in advance, the 

presence of risks on the road surface. 
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1 Introduction 

 

The operation of fleets of trucks in dirt roads, typically in open mines, presents many issues 

related to safety and productivity. These machines usually operate almost continuously under hard 

conditions. One particular issue is the condition of the roads. These roads usually deteriorate due 

to heavy transit and adverse weather conditions. The hauling of ore and other bulk material are also 

the source for the presences of debris on the road. The machines although heavy and robust are 

affected by those road conditions. One usual problem is the damage in the tires when these hit rocks 

and other debris on the roads. A heavy truck (e.g. 300 tons) moving at 60Km/h and hitting a solid 

rock of 40 cm size would likely damage one of the tires. It is easy to think about some sensor that 

would scan the road ahead the truck and inform the driver (human or autonomous machine) to take 

adequate control actions (e.g. reduce speed or perform a slight turn to avoid the object). That 

warning should be given in advance, giving the driver (or even an autonomous system) enough 

time to perform a smooth avoiding action. Unfortunately, the necessary horizon of time should be 
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in the order of seconds or its spatial equivalent: several tens of meters. This early warning process 

implies that the machine must detect objects that are located 100 meters ahead the vehicle. Even in 

good conditions of visibility and line-of-sight, a laser scanner (that is a commercially available, 

cost effective and accurate enough sensor) would not be able to scan the road with the necessary 

detail. By the time the machine realized about the obstacle it would be too late to perform any 

necessary and admissible avoiding maneuver. This situation means that the truck would need more 

powerful sensing capabilities. Sensors offering those better capabilities do exist, but those are more 

expensive and not reliable to operate in the dirt road conditions. Conditions such as vibration, dust, 

humidity, and temperature are too hard for these complex sensors. 

Outdoor laser scanners such as the well-known Sick LMS211 ([15][15]) and LMS151, have 

successfully been being used in mining operation, e.g. in guidance systems ([2] [4]). Years of 

operation with acceptable maintenance issues have demonstrated that that sensing technology is 

adequate for mining environments. However, the problem of the limitation in the scanning range 

does still persist. The scanning range, ideally about 80 meters for that sensor, is when exposed to 

real conditions (dust clouds, opaque surfaces and reflecting from non-perpendicular surfaces) 

usually not better than 20 meters. There is no adequate control action, feasible of being generated 

based on just 20 meters of visibility, for a heavy vehicle moving at high speed. A truck moving at 

20 m/s (72 Km/h) would have only one second to react. A human driver would need a big fraction 

of that first second just to get aware about the risk. After that warning is given, no feasible maneuver 

would be possible due to the non-holonomic dynamics of the machine itself. If the machine was in 

trajectory to hit the object it would likely hit it. This limitation would eventually be solved by 

installing good sensing capabilities on all the trucks. Expensive and sensible equipment in a high 

number of trucks is an equation that would discourage any technical or financial decision maker. 

The elevated initial cost and the permanent maintenance costs are the drawbacks of this option. 

Alternatively, it would be extremely convenient if the sensing equipment, needed per truck, were 

cheap and robust (low maintenance) and also if there was no need for a large scale deployment, i.e. 

no strict needs to install the equipment in all the trucks. This option is feasible through a process 

involving collective learning of the road conditions. The collective learning is presented in this 

paper in addition to a method to synthesize the 3D representation of the road surface through 

relatively low cost and industrial grade sensing equipment. 

 

2 Description of the Approach 

 

The collective learning and sharing of belief about the condition of roads is feasible to be 

implemented in an inexpensive way. For this process to happen all the trucks would need, at least, 

a short range / low bandwidth communication system such as the one applied in [3] and [5]. A 

subset of the vehicles, denominated active vehicles, needs to be equipped with exteroceptive 

sensing capabilities such as laser scanners, (e.g. one scanner per active vehicle). 

In this implementation each active vehicle has a laser scanner, low cost dead-reckoning resource 

(usually just speed measurements and low cost 3D gyroscopes) and a low cost GPS unit (operating 

in intermittent and low quality mode, i.e. the denominated autonomous mode). In fact the GPS 

measurements could be replaced by any low accuracy global localization module, able to provide 

position estimates of accuracy similar to a GPS properly operating in autonomous mode. The 

vehicle global localization could be done by GPS, GPS-SLAM fusion [1], constrained dead-
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reckoning [6] or any process able to provide absolute position estimates having an error in the order 

of meters (called in this context low quality global position estimates). 

Based on the laser scans and on the local dead-reckoning estimates, it is possible to generate a 

high quality 3D local representation of the road and its surroundings. From that surface is it also 

possible to infer and detect terrain features such as protuberances on the road (usually rocks and 

debris) and aggressive terrain depressions (pot-holes, ditches). The size and other properties of 

these features are estimated as well, depending on the resolution of the sensing device. All those 

objects of interest (OOI) and their estimated characteristics are included in an on-line database, on 

board the vehicle’s processing node. These objects are correlated to their absolute positions on the 

road (provided by the estimates of the vehicle absolute localization). More exactly, for the context 

of this approach, localization means the localization in the longitudinal coordinate of the road, 

quantized in sections, due to the fact that the roads are modeled through a set of one dimensional 

(1D) manifolds. The sections can have lengths of meters or about tens of meters. No higher 

localization accuracy is required in order to give an early warning to drivers about the presence of 

risks in certain parts of the road. 

As some vehicles get in proximity to others they are able to share information (as the usual 

situation shown in Figure 1). Consequently, the vehicles can update their local beliefs (the on-

board databases) with the latest information about the quality of the road sections, provided by 

other agents. This capability is independent of the sensing capabilities of the trucks, i.e. passive 

agents can also update their on-board beliefs based on the sharing of information with other agents. 

In this way, an efficient, reliable and inexpensive (in terms bandwidth usage and sensor 

deployment) process maintains the most accurate belief about the road condition, in each vehicle’s 

local database.  

This process (sharing of belief) is performed by any vehicle (passive or active). The active 

vehicles have the additional capability of being able to sense the road, in addition to give and 

receive fresh information to/from other vehicles. 

Clearly, the maximum speed for learning the condition of the roads is by making all the vehicles 

to be active agents and increasing the range of the communication system. However, the approach 

does even work with just a small number of active units and operating with a short range 

communication resource, although this situation would decrease the convergence speed of the 

estimation process. 

 

2.1 3D Representation of the Road Surface 

 

Several fusion processes are involved in the synthesis and interpretation of the 3D imagery: The 

approaches for modelling the road and estimating the pose of the vehicle are achieved through 

sensor data fusion of on-board sensing resources: laser scanner, 3D inertial measurement unit 

(IMU) and speed measurements. Based on the estimates provided by the fusion processes, a number 

of client processes perform higher level tasks such as the feature extraction to detect obstacles. 

Details about the perception processes are not included in this document; those are based on 

previous work of the authors. The 3D synthesis was treated in [8] and [9], and the 3D terrain 

modeling based on PWML (Piece Wise Multi Linear) was developed for different applications in 

[7] and [9]. 

In this particular application, where the main interest of the perception processes is to detect 
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features of the road, the scanner is maintained at a fixed elevation angle, respect to the vehicle 

chassis, in order to scan the road surface linearly and generate a high quality 3D image just locally 

(there is no interest in generating large 3D maps). In other applications, developed by the authors 

such the works presented in [8],[13] and [9], the objective also considers the possibility of 

performing 3D scan matching, for generating global 3D maps. In those cases the scanner is 

periodically rotated in its elevation angle ([8],[13]) or in azimuth ([9]), in order generate sequences 

of good quality 3D images which have common areas. The overlapped 3D images allow a scan 

matching process to generate large 3D maps, a resource that is not required in the project presented 

in this paper, although it could be exploited for the global localization process. 

It must be remarked that the 3D synthesis process, which is based on the mentioned sensor data 

fusion processes, allows the generation of high quality 3D imagery, in a local sense; consequently 

allowing an effective and reliable feature extraction for the detection of risk on the roads, nearby 

the active agent. 

 

 
Figure 1. A usual context: Vehicles operating in a dusty environment that limits the visibility 

for human operators and sensing resources. The vehicles are able to establish short range 

communication, usually under Line of Sight (LoS) conditions, when some agents are 

temporarily in proximity (as the situation captured by the picture). They are briefly able to 

communicate in order to share their beliefs about the context of operation. A laser scanner 

of the LMS211 family can be seen at bottom right of the image, where the sensor was installed 

for testing the sensor, on a maintenance vehicle operating in a mine. This photograph was 

taken from inside the cabin of the vehicle. 
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Figure 2. Sketch showing the scanning process: a sequence of laser scans and the associated 

3D projection. In the figure the separation between consecutive scans, in the vehicle’s 

longitudinal direction, is exaggerated. In a real case, e.g. for a truck travelling at 60km/h, the 

separation between scans would be, in average, approximately 22 cm (for a LMS211 

operating at a scan rate of 75 Hz). Oscillations of pitch angle, mainly due to suspension effects, 

can temporarily increase and decrease the inter scan separation. 

 

Figure 3. Example of a detected object of interest (OOI), in this case a pot-hole detected on 

the surface of a dirt road (Note that the scale of the z axis is in cm and the scale of X and Y is 

in meters). A small patch containing the OOI is extracted and published in the system 

database. A higher level client module would process the patch to classify and extract relevant 

features, in order to compress the information for sharing purposes. Those ‘compressed’ 

properties of the OOI are the pot-hole diameter, depth and low accuracy geographical 
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position (global localization). More details about these perception processes are available on-

line in [11]. 

 

2.2   Learning of the Road Condition 

 

The objective of the learning process is the synthesis of a belief for representing the condition of 

the road. It must be noted that the condition of the road is time varying, due to the fact that features 

can appear and disappear (e.g. removal of debris) through the time. 

The learning process is based on observations that can be positive or negative. Positive 

observations are those that report the existence of an object on the surface of the road. Negative 

observations are those that report that an area of the road is clear of features (no objects of interest 

or OOI). Both types of observations contribute to the update of the belief about the road condition. 

Positive observations may produce the creation of a new item (in the population of OOIs, described 

in the current belief) or usually they increase the probability of existence of some previously 

defined OOI. 

A negative observation would reduce the probability of existence of certain known OOI in a 

related area of the road. Typically, those cases happen when dangerous objects (e.g. debris) are 

removed from the road. 

It must be noted that each observation involves a Data Association process, i.e. the new perceived 

OOI is usually associated to a currently known OOI. 

For instance, if an OOI is detected by the agent perception processes, then the first step is 

associating it with a section of the road (global location). The second step verifies if one of the 

currently known OOIs (listed in the database that implements the belief) could be associated to the 

recently perceived OOI. If one of the currently known OOIs does match the new one, then its 

current assigned probability of existence is increased. If none of the current database’s OOIs could 

be associated to the recently perceived OOI, then a new OOI is added to the database. 

There are diverse OOI’s properties that are used for performing the Data Association. One of the 

properties is the geographical position of the OOI, which is discretized in terms of road sections. 

The position is expressed by at least 2 integer parameters that identify the road and the section of 

the road where the point is located. Any global localization process, providing accuracies in the 

order of meters (e.g. 10 meters), would be adequate for allowing a reliable Data Association 

process. This is why the system only requires low accuracy estimates for the global localization. 

A second relevant property is the type of OOI. The type is also an integer parameter, enough for 

labelling OOI as pot-hole, obstacle, ditch, etc. 

A set of secondary properties, mostly dependent on the type of OOI, are also perceived and 

associated to each database’s OOI. Those properties are used for diverse purposes, such as reporting 

and also Data Association as well. 

 

2.3  Learning Policies 

 

Two different policies for the learning process are proposed. One of them works in a centralized 

fashion by giving a particular node (or set of nodes) the task of collecting the observation of all the 

agents and performing the fusion in order to estimate the map of OOI for all the roads. That 

particular node is a permanent node and is termed base station (BS). The BS node may have other 
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duties as well, although those are not of interest in this paper. Each agent that briefly communicates 

with the BS is able to receive the updated version of the belief. 

This class of policy is effective in contexts of operation where all the agents usually visit the BS, 

typically in open mines operations.  

A BS is not necessary implemented by a sole node; it could be implemented by set of nodes, 

geographically separated but permanently connected via network resources. Multiple BS nodes 

allow more flexible distribution of agents and itineraries, provided that each of the agents performs 

periodic visits to at least one of the BS nodes. 

A second policy works in a decentralized way and allows all the nodes to contribute with on-

board processing in the estimation stage, i.e. not just actuating as perception nodes. They collect 

observations like in the centralized policy but they additionally process these observations and 

produce an update of the private beliefs. Each time that two agents enter in brief radio contact, they 

perform a fusion of both beliefs. This policy is more expensive in terms of usage of communication 

resources, however it allows a more reactive update of the beliefs and also allows the agents to 

exploit the benefit of the cooperative learning without needing to visit any BS node. 

 

3 Experimental Results 

 

Comprehensive experiments, in simulation and real platforms were performed. For the 

experiments performed on a real fleet, the number of agents was low (3 agents) due to limitation in 

the available resources (mainly vehicles retrofitted with laser scanners). 

Figure 4 shows the paths (i.e. coarse waypoints, planned on the roads) that were part of the real 

test. All the objects that were perceived to be risks for the vehicles were indicated on the road by 

yellow squares. 

 
Figure 4. Satellite image showing the place of the experiments. The place included dirt roads 

in rural and residential areas. The superimposed polylines indicate the waypoints assigned to 
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each agent. The agents travelled some common sections of the roads but had different 

nominal speeds and sequences of waypoints. OOIs are indicated by yellow squares. 

 

Some additional situations were tested such as processing negative information, i.e. the case 

where certain OOI had disappeared (an obstacle physically removed from road). The removal 

policy is conservative in the sense than more than one iteration is required in order to completely 

remove a risk from the belief (as false negatives are considered more critical than false positives). 

For the case of processing positive information, only one iteration is needed to accept the existence 

of a new OOI. 

Some static agent was also included in some experiments. This type of agent behaves as a vehicle 

that is parked and still receives, updates its belief and shares information to temporarily nearby 

mobile platforms. 

The implementation of the communication resource was based on standard narrow band radios 

(XBeePro [10]), operating data rates of about 128 Kbps. 

Three mobile active nodes were implemented through standard cars, which were legally able to 

operate in the rural roads of the area where the experiment took place. Pictures of one the cars can 

be seen in [11], where an IMU, a laser scanner (a blue LMS200 ([15][15]), on the car’s roof), a 

GPS  and an XBee radio where installed, in addition to an on-board computer (a laptop). Figure 4 

shows a satellite image of the test area, where the roads involved in the test are indicated. No all 

the roads were travelled by all the vehicles. Small yellow squares indicate the approximated 

location of the detected OOIs.  

Figure 5 shows the events where the vehicles had an encounter, i.e. each time when a couple of 

them are in geographical proximity and establish a brief communication process. The event are 

shown against the time, that is labeled in minutes (is should be noted that the covered area is in 

order of kilometers, and the vehicles were moving at speeds of about 20Km/h). 

Figure 6 shows the events where the active vehicles detect an OOI. Those are positive observations, 

i.e. real OOI being inferred from the perception processes.  

Figure 7 shows the beliefs about the existence of the detected OOIs. The beliefs are estimated 

through probabilities implemented through counters, although the values, shown in the figure, are 

simplified to existence (value=1) or no existence (value=0). 
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Figure 5 Encounters (brief data sharing action between nearby agent) experienced by each 

of the agents during part of the test. The top subfigure shows the encounters from the 

perspective of agent 1. Agent 1 establishes sharing sessions with agents number 2 and 3, as it 

is indicated in the figure. The other two subfigures present the encounters from the 

perspectives of agents 2 and 3 respectively.  
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Figure 6 Risks individually observed by each of the agents. The symbol at the top of each 

vertical line is used to graphically indicate the ID of the risk. Naturally, the same agent may 

observe the same risk a number of times, as it revisits the same sections of the road when 

repeating its usual trip (a typical behavior of hauling trucks in mining contexts). 

4 Conclusions 

 

The performed tests validated the expected performance, which had been previously obtained in 

synthetic simulations. It showed that when an agent discovered a new threat the rest of the agents 

were usually able to know its existence well in advance to the time when they would physically 

encounter it. The main implication of the results is that this low cost system reliably operates in 

diverse weather conditions because is based on medium range perception capabilities but applied 

to short range perception, what gives the system the capability to still operate in low visibility 

conditions (e.g. dust, rain). It is also important to note that high accuracy perception is applied 

where it is needed and cost effective (local 3D imagery), while easily achieved low accurate 

estimates are generated for client processes because those just require that quality (e.g. global 

localization that is used for Data Association and Event Reporting). 

In addition to the usual low accurate GPS (low cost autonomous or differential modes), the 

localization was achieved via Virtual GPS [6], intended for GPS denied contexts, what means this 

system could also operate in difficult contexts such as underground mines. 

 

 

 
Figure 7. Both classes of individual beliefs: purely individual (based on on-board 

observations, indicated in solid lines) and the belief based on collective learning (shown by 
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broken lines). Value =1 means the agent knows about the existence of the risk. Each of the 6 

risks is indicated by a different color. Values = 0 indicate that the agent does not know about 

the risk, at that time. Transitions, from 0 to 1, represent the moment when the risk is learned 

by the associated belief. For a particular color, it can be seen that in many cases, the broken 

lines show transitions in advance to the associated continuous lines (of the same color), what 

means that the agent, due to the collective belief, estimated the presence of those risks in 

advance to their physical detection. 

 

Additional Resources 

Additional resources, for the readers that may be interested in this work, are available on-line in 

[11]. These resources include videos and data used in this paper and future related work. 
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