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Several different dynamic road response models are compared and it is concluded that simple models, such as a 
beam on a Winkler foundation, can reproduce the characteristics of more complex models, such as a stack of 
elastic plates. Two different methods of using harmonic response models to reproduce road responses to moving 
random loads are compared, the convolution and influence function methods. It is concluded that the simpler of 
the two methods is sufficiently accurate for predicting road damage due to dynamic tyre forces. 

1. INTRODUCTION 

There are many different dynamic road models in 
general use, ranging from an elastic beam on a 
Winkler foundation (Cebon 1987) to more complex 
non-linear (Semenov 1976), anisotropic (Anon) or 
dynamic layered systems (Kausel and Peek 1982). 
The more complex the model, the more time (and 
effort) is required to solve a particular problem and 
this may prove unwarranted as the increased detail of 
the model may not be relevant to the problem 
addressed. 

This paper examines the qualitative and quantitative 
results that may be derived from three linear, dynamic 
road models and presents formulae for calculating 
pertinent strains and displacements. A general 
convolution method is also presented for calculating 
the response of a linear system to moving dynamic 
loads from harmonic or impulse response functions. 
It is found that this method requires considerable 
computer time and therefore a simplification of the 
general method, the influence function method, is also 
presented. The paper evaluates the suitability of these 
two approaches for predicting road damage produced 
by vehicles, and quantifies the worst-case errors that 
may be introduced by the influence function method. 

2. DYNAMIC ROAD MODELS 

2.1 Convolution and influence function 
methods 

The well-known convolution integral, used to give 
the output of a linear system to an arbitrarily varying 
input, may be extended to cater for moving loads. 
This formulation relies on knowledge of the road's 

impulse response functions which can either be 
measured on an instrumented road (Hardy and 
Cebon 1989) or calculated from the harmonic 
responses of one of the road models that follow. This 
approach assumes that the road response is linear and 
isotropic. This method has been compared favourably 
with extensive field measurements (Hardy 1990; 
Hardy and Cebon 1989). 

It is possible to simplify the convolution method if 
the impulse responses of the road die away quickly 
with respect to the rate of change of the tyre loads. 
The simplified formulation predicts vehicle speed 
effects accurately but with the loss of a full dynamic 
calculation. The saving in computer time is, however, 
approximately a factor of 30-50. 

2.2 Comparison of models 

2.2.1 Beam on a Winkler foundation 

A beam on a damped elastic (Winkler) foundation 
is probably the simplest, useful road model, making it 
very attractive when developing a conceptual 
understanding of the way in which roads support 
loads. It has been compared with more complex 
dynamic layered models and found to behave 
qualitatively in the same way, showing similar 
responses to changes in material stiffnesses and 
densities (Hardy 1990). 

The shortcomings of the beam model are that: 

(1) The stiffness and damping parameters 
describing the subgrade do not directly relate 
to the matelial properties of the pavement. 

(2) Only the stiff surface asphalt layers are 
modelled realistically and therefore the 
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behaviour and stress/strain distribution 
through the subgrade cannot be calculated. 

(3) The stress/strain distribution through the 
smface layer is prescribed by the Euler Beam 
model and is not reliable calculating 
permanent deformation (rutting) in the 
asphalt layers. 

(4) the model is restricted to a single space 
dimension and therefore cannot predict 
transverse strains. The peak transverse strain 
under a single load is equal to the peak 
longitudinal strain but this is not the case 
under multiple loads. This may cause errors 
in fatigue calculations. 

2.2.2 Plate on a Winkler foundation 

The main advantage of the plate model over the 
beam is that transverse strains can be calculated. As 
the plate also has similar two-dimensional geometry as 
a road it is expected to yield more realistic results. 
The formulae involved are, however, much more 
complex than those for a beam. The first three 
limitations for the beam still apply, however, because 
the assumptions in simple plate theory are very similar 
to the assumptions in Euler Beam theory. 

2.2.3 Layered elastic half-space 

This model uses an approach similar to the finite­
element method to model the dynamic response of a 
stack of plates overlying a rigid foundation. Each 
element consists of an infinitely large, thin layer 
which is modelled as a plate but also with compliance 
through its thickness. It may therefore be used as a 
more refined model of a road structure than a single 
plate model and will yield any components of stress or 
strain that are be required. The parameters used in the 
model are the material properties (density, stiffness, 
damping, Poisson's ratio) and the layer thicknesses, 
so that the effects of varying materials can be 
investigated in all layers. This infinite-element 
approach requires substantial amounts of computer 
time and memory making it relatively unattractive for 
simple studies. 

3. FORMULATIONS OF THE ROAD 
MODELS 

3.1 The Convolution Method 

The response of a linear system to a time-varying 
input is given by the convolution integral (New land 
1985): 

y(') = [ h(.-<) f«) d< 

where yet) is the response at time t, 

f('t) is the input force at time 't, 

(1) 

and het) is the response at time t to a unit impulse 
at time t = O. 

If the input is moving in a straight line at constant 
speed v with respect to the system and the response is 
measured at a point with position x then the 
convolution integral in equation (1) becomes: 

y(x, t) = f~ h (x - v't, t-'t) f('t) d't. (2) 

where y(x,t) is the response at position x at time t, 
h(x,t) is the response at position x, and time t, 

to a unit impulse at the origin at time t=O. 

This equation is similar to that derived by Cebon 
(Cebon 1988b), where it was used to find the 
response of a continuously supported beam to 
arbitrary, moving excitation. 

The simple convolution integral, equation (1), is 
often solved in the frequency domain using Fourier 
transfomls because the transform of the integral 
reduces to a simple multiplication (Newland 1985). 

The same technique may be used to simplify the 
moving convolution integral, equation (2), but it is 
necessary to take Fourier transforms with respect to 
both time and space variables as follows: 

yeS, co) 

= b~)2 f [ y (x, t) e-;mt e-;SX d. dx 

= (2~ f f f [ hi x -v<,' -<1ft <) e-;mte-iS' d< dt dx 

= 21th(S, co) f(co + vS) 

where co is the angular frequency of loading, 
corresponding to the time t, 

(3) 

S is the wave number, corresponding to 
the distance x, 

and tilde, -, indicates a transformed function. 

This formula is particularly useful for ascertaining 
the relative importance of speed and frequency in road 
responses. 



3.2 Influence Function Method 

A change of variable in equation 2 gives the 
response as: 

y(x, t) = f.~ h (x - v(t-'t), 't) f(H) d't. (4) 

This may be simplified if f(t) changes much more 
slowly than the impulse response decays. In this case 
f(t-'t) may be considered constant over the integral and 
equation (4) reduces to: 

y(x, t) = I(v, x-vt) f(t) 

whe>ee I(v.x)~ f h(x+vt. t)dt, (5) 

I(v,x) is the 'influence function' at speed v and 
position x. The consequences of this simplification 
are discussed and quantified later. 

3.3 Beam Equations 

The motion of an infinite beam resting on a 
Winkler foundation and excited by an harmonic point 
load at the origin is described by the equation (Fryba 
1972): 

4 
* d w (* 2) E 1-4 + k -110) w = P8(x) 

dx 
where E*I is the complex flexural rigidity of the 

beam, 
w is the vertical beam displacement at a 

distance x from the origin, 
k* is the complex support stiffness, 

11 is the the mass per unit length of the 
beam 

and P is the applied force. 

(6) 

The general solution of the fourth order differential 
equation is the weighted sum of four exponential 
functions and may be written as: 

w - A e~x + A e-~x + A e iJlx + A e-ifh 
- 0 1 2 3 (7) 

where ~4 = (1l0)2-k*)J(E*I) and ~ is taken with 

argument in the range -n12 to O. 

This can be solved in either the damped case using 
boundary conditions of zero displacement and slope at 
large distances or in the undamped case requiring 
propagation of waves solely away from the origin. 
Both cases also require the zero slope and shear force 
compatibility at the origin, 
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(8) 

The solution may be written as: 

_ P (-~IXI . -i~IXI) w--- e -le 
4E'~3 . (9) 

The strain at the bottom of the beam is then given 
by: 

_ h d 2w _ hP (-~Ixl . -i~lxl) E ------- e +le 
j 2 dx2 8E'I~ 

(10) 

where h is the thickness of the beam. 

3.4 Plate Equations 

The motion of an infinite plate resting on a Winkler 
foundation and excited by an harmonic point load at 
the origin is described by the equation (Fryba 1972): 

* 4 (* 2) P8(r) DV w + k -110) w = --
2nr (11) 

where D* is the complex plate bending stiffness 
which is related to the complex Young's 
Modulus, E*, Poisson's ratio, v, and 
plate thickness, h, by 
D*=E*h3J(12(I-v2»), 

V4w is the differential operator V2 acting 
twice on w to give: 

1 d ( d (1 d ( dW))) 
-;:- dr r dr -;:- dr rdr ' 

w is the vertical displacement of the plate at 
a distance r from the origin, 

k* is the complex support stiffness, 

11 is the the mass per unit area of the plate 
and P is the applied force. 

The general solution of the fourth order differential 
equation is the weighted sum of four (Modified) 
Bessel functions and may be written as: 

w = BoJo(ar)+ BjYo(ar) + 

B2Io(ru) + B3KO(ar) (12) 

where a4 = (m0)2-k*)J(D*) and a is taken with 

argument in the range -n12 to O. 

This may be solved, in either the damped or 
undamped cases, using boundary conditions of zero 
displacement and slope at large radii, or propagation 
of waves solely away from the origin, along with the 
zero slope condition and shear force compatibility at 
the origin, 

67 



HEA VYVEHICLES AND ROADS 

68 

The solution may be written most succinctly as a 
Thomson (Kelvin) function, (kei): 

w = -2P * [iJo( ar) + Yo( ar) + ~ Ko( ar)] 
8a D re 

-Pi k'( i"'4) = 8a2D* el are . (14) 

Again, geometrical arguments give the longitudinal 
and transverse strains as: 

h d2w 
£1 =---

2 dr2 

= ~(ker(areinj4) 
16D* 

_ e -inj4 (kei! (are inj4 ) _ ker1 (are inj4 ))) 
..fiar 

and 

h dw 
£ --­

t - 2r dr 

hPe-inj4 (. . ) = 16..fi arD* kei1 (aremj4 ) - ker! (aremj4 ). (15) 

where £1 is the longitudinal strain, 

£t is the transverse strain, 
ker, kei}, kei} are Thomson functions 

and h is the plate thickness. 

3.5 A Layered Half-Space 

For complete details of the method used to predict 
harmonic responses in layered media, reference 
should be made to the work of Kausel et al. (Kausel 
and Peek 1982; Kausel and Roesset 1981). An 
overview of a simplified method is given here for the 
sake of completeness. The simplifications are a 
consequence of considering only vertical slllface loads 
with a circular, uniform pressure distribution. These 
loads cause displacements and stresses that may be 
defined uniquely by two components, the vertical and 
radial, as they generate no rotation about the axis of 
the load. 

The axially symmetric stresses and displacements 
produced at layer interfaces by a vertical surface disc 
load may be transformed into the wave-number 
domain by use of the Hankel Transform. This 
transform breaks the loads and displacements at each 
layer in the road structure into their component Hankel 
functions (in the same way that the Fourier transform 
breaks a signal into its component sinusoids). The 
wave-number identifies each component of the Hankel 

Transform in the same way as angular frequency 
defines the Fourier component. 

When transformed in this way the dynamic 
equilibrium of a single layer may be written as a 
matrix equation with a stiffness matrix relating 
transformed displacements to transformed loads. This 
term is used by Kausel to describe the matrix relating 
dynamic displacements to dynamic forces. It therefore 
includes a term which is dependent on the mass of the 
layer. For thin layers a linear interpolation function 
can be used for the vertical variation of displacements 
within the layer and in this case the stiffness matrix 
for a given layer contains simple algebraic expressions 
involving the geometric and material properties of that 
layer. If there is no slippage between layers the 
matrices for each layer of a multi-layered structure can 
be overlapped to give a global stiffness matrix because 
the internal stresses between layers are equal and 
opposite and the displacements of the bottom of each 
layer are the same as the displacements of the top of 
the layer below it. 

In order to find the displacements due to the 
applied load it is necessary to invert the stiffness 
matrix. Kausel showed that the inverse matrix may be 
represented as the eigenvectors/values of an associated 
eigenvalue problem. 

Once the elements of the inverse matrix are known 
it is possible to perform the inverse Hankel Transform 
to retrieve the desired displacements at each interface. 
The strains can also be derived from these general 
equations. 

The vertical strain is constant in any given (thin) 
layer because of the linear interpolation function for 
displacements assumed above. In order to find the 
vertical strain in a layer it is only necessary to find the 
difference in the displacements of its two faces. 

The radial (longitudinal) strain is given by the 
derivative of the radial displacement with radial 
distance: 

OUr 
£ -­I - or (16) 

and the tangential (transverse) strain is given by: 

(17) 

The radial and tangential strains are principal 
strains because of the symmetry of loading and 
therefore the strain at any angle on an interface may be 
deduced from them by use of Mohr's circles. The 
vertical strain is not generally a principal strain for this 
loading case. 
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Figure 1 Measured and Simulated Frequency 
Response Functions 
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COMPARISON OF HARMONIC 
RESPONSES 

A set of transverse strain impulse responses were 
measured on an instrumented road (Hardy and Cebon 
1989). Fourier transforms were used to convert these 
measured impulse responses into harmonic response 
functions (Newland 1985). A set of parameters were 
chosen for use in the layered half-space model so that 
it would simulate these measured responses. The 
parameters chosen for the model are given in Table 1. 
The damping parameter, ~, is used to define the 
complex Young's Modulus and introduces viscous 
damping into the system. The complex modulus is 
given by E*=Eo(1 + iro~). Figure I shows the 
measured and predicted frequency response functions 
with the load applied directly over the response 
position and also with the load applied at a distance of 
I.8m from it. The comparison of the responses 
indicates that the layered model may be used to 
simulate the dynamic behaviour of the road accurately. 

It is interesting to note that the depth of the 
subgrade (clay and hoggin layers) does not affect the 
distribution of strains through the pavement layers. 
Figure 2 shows the calculated static (i.e. OHz) strain 
as a function of depth directly under the load with 
subgrade depths of 1.6m, as shown in table 1, and 
5.6m. The figure indicates that it is not necessary to 
model the subgrade precisely if only the strains in the 
surface layers are required. The interface between 
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Material Layer Modulus pamping lPoisson's iDensi,!Y 
Depth EO ~ Ratio (kg/m3) 

(mm) (MPa) (sec/r.Id) 

Hot Rolled 50 3000 5xlO-3 0.35 1000 
Asphalt 

Dense 150 3000 5xlO-3 0.35 1000 
Bituminous 
Macadam 

~rushed 300 140 5xlO-3 0.40 1500 
~ock 

~lay 600 140 1 x 10-4 0.45 1000 

Roggin 1000 140 lxl0-4 0.45 1000 

Table I Parameters for the layered balf-space 
simulation. 

the asphalt and aggregate layers is clearly visible at a 
depth of 0.2m and the almost linear distribution of 
strain through the surface layers make it attractive to 
model thick surface layers as a plates. 

A comparison between the static deflection bowls 
for the layered half-space, a plate on a Winkler 
Foundation and a beam on a Winkler foundation is 
shown in figure 3. Figure 4 shows the variation in 
surface displacement directly under the load as a 
function of applied loading frequency for each of the 
models. 

The material parameters for the plate and beam 
were chosen to be the same as the asphalt layers in the 
half-space. The width of the beam and the stiffness 
and damping of the Winkler foundations were then 
chosen to simulate the half-space data. 

The effective stiffness of the support under a rigid 
plate (Le. under plain-strain conditions) can be 
calculated from elasticity theory and is given by 
ko*=E*(l-v)/(h(l-v-2v2)) where h is the depth of the 
asphaltic layers. A value of 0.77kO* was found to 
give a good fit between the plate and half-space 
models. The plate is not rigid so the effective 

5 

. ..................................... . 

Depth (rn) 

Figure 2 The Static Distribution of Horizontal 
S train under the Load. 

Subgrade depth 1.6m ___ , 
Subgrdde depth 5.6m - - - - - - - -, 
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Distance from Load (m) 

Figure 3 The Static Deflection Bowls. 

Layered Half-Space 
Plate 
Beam 

foundation stiffness is reduced. The beam was 
chosen to be 1m wide (approximately half the size of 
the deflection bowl) and the required support stiffness 
was found to be O. 71ko *. These figures illustrate that 
the beam and plate models can, under a restricted set 
of conditions, provide a useful model of a road. 

5. COMPARISON OF CONVOLUTION 
AND INFLUENCE FUNCTION 
CALCULATIONS. 

To compare the damage caused by dynamic tyre 
forces of heavy vehicles it is necessary to use either a 
convolution or influence function calculation. It is 
therefore important to know the magnitude of the 
errors in theoretical damage associated with the 
simplification of the influence function calculation. 

To compare the calculation procedures for realistic 
operating conditions a set of theoretical vehicle loads 
was generated using a vehicle simulation program 
(Cole and Cebon 1988). Two simple linear vehicle 
models were used. The 'quarter-car' (figure 5) 
represents soft steel or air suspensions with a main 
dynamic component at 1.9Hz. The 'walking-beam' 

j' 6.0 

~ --------~ t-------~-~-~-~~ ______ _ 1. 5.5 f- - --

~ c 

" '" il 
'ii 5.0 
0 

!l 
" 't: 

" III 4.5 0 5 10 

Frequency (Hz) 

15 

Figure 4 Frequency Response Functions. 

Layered Half-Space 
Plate 
Beam 

20 

ks Cs 

ms = 4450kg mu = 550kg 
Cs = 15kNs/m Ct = 2kNs/m 
ks = 1000kN/m kt = 1750kN/m 

Figure 5 Quarter Car Vehicle Model. 

model (figure 6) has dominant frequencies at 2.8 
and 9Hz. Both models simulated driving over a 
'poor' random road profile, as defined in (Anon 
1972). This profile was used in order to excite large 
dynamic loads that would yield worst-case differences 
between the convolution and influence function 
calculations. The impulse responses and influence 
functions were derived from measurements (Hardy 
and Cebon 1989). The damage inflicted along the 
road was calculated using the usual e-N fatigue law 
with an exponent of 5, the 'rainflow' method of cycle 
counting and Miner's hypothesis (Hardy and 
Cebon 1992). 

I~ 

Torsional 
Damper Cu 

2a 

Cs 

ms = 3900kg ks = IMN/m Cs = 15kNs/m 
mu = llOOkg kt = 1.75MN/m Cu = 1.5kNs/rad 

Iu = 465kgm2 Ct = 2kNs/m a = O.65m 
Figure 6 Walking Beam Vehicle Model. 
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Figure 7 shows examples of the variation of 
damage with distance calculated in this way. The 
differences between the two calculation procedures are 
evident in the predicted damage. 

The 95th percentile damage can be used to compare 
the level of damage suffered at the 5% of worst points 
along the road at different speeds (Cebon 1988a). 
The variation of the 95th percentile damage with speed 
for both vehicle models and both calculation 
procedures is shown in figure 8. In each case the 
graphs are normalised by the damage incurred at 
'creep speed'. It is worth noting that each 
convolution calculation took approximately thirty 
times longer than the equivalent influence function 
calculation. Normalised 95th percentile damage levels 
of 4-6 are more typical (Cebon and Winkler 1990). 

It is apparent that Me damage predicted by the two 
road response calculation procedures is virtually 
identical for both vehicle models. The very large 
damage levels for the walking-beam do not occur in 
practice because (i) heavy vehicles would not drive 
along such rough roads at high speeds, and (ii) in 
practice the tyres would lose contact with the road 
surface for the simulated conditions, but this did not 
occur for the linearised vehicle models. 

The influence function simplification has been 
checked on one test road and there may be roads for 
which it is not valid. The road profile input to the 
vehicles was, however, much more uneven than 
typical trunk roads causing very large dynamic forces. 
It is thought that the worst-case results presented here 
obviate the need to perform a large parametric study. 
Verification on several more roads is thought 
desirable. 
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6 CONCLUSIONS 

............ , 
---_., 

(i) It is not necessary to model a complete road 
structure in order to simulate the dynamic response of 
the asphalt surface layers. The precise detail of the 
model required depends on the information that is 
required from it. In particular, it has been found that 
the strains in the surface layers are independent of the 
depth of the subgrade. 

(ii) The infl uence function calculation is 
sufficient to model road responses to dynamic wheel 
loads as the errors introduced are very small. This 
does not mean that the influence function method is 
suitable to simulate responses to stationary dynamic 
loads such as the Falling Weight Deflectometer. 
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