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Abstract 

The ever increasing global freight task brings with it a number of challenges for road freight 

transportation. The combination of high-capacity vehicles and Performance-based Standards 

(PBS) is proving to be a viable and sustainable option in combatting some of the challenges, 

particularly environmental and safety. However, with the increase in the number of PBS 

initiatives as well as vehicles globally, there is an ever increasing demand on vehicle 

designers, PBS assessors and regulators. In this paper, we present an updated methodology for 

the development of PBS performance prediction or calculation tools: so-called 

“Hyperformance” models. The methodology we propose uses a probabilistic machine learning 

technique called Gaussian Processes (GP), which provides both a prediction of vehicle 

performance, as well as an indication of the accuracy of the model for each prediction. This 

approach is ideally suited to efficient development of Hyperformance models for new vehicle 

configurations. This has value in that they can be used to define new pro-forma or blueprint 

designs, as well as being used for optimisation of vehicle parameters for a given application. 

We also present a case-study in which we develop GP prediction models for a PBS B-double 

combination. 
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1. Introduction 

 

As a result of the parallel global challenges of increasing freight volumes, and the need to 

reduce emissions, successful Performance-based Standards (PBS) initiatives have been 

implemented and investigated in Australia (National Transport Commission, 2008), South 

Africa (Nordengen et al., 2018), and more recently in the European Union (Kharrazi et al., 2017) 

and (Kural et al., 2018). With the ever increasing number of new PBS combinations being 

developed under these initiatives, there is a growing burden placed on vehicle designers, trailer 

manufacturers, PBS assessors, and the relevant road authorities. 

 
There are two options to fast-track the development and approval process of PBS-compliant 

vehicles: pro-forma designs, in New Zealand (De Pont, 2010), and “blueprint” designs in 

Australia (National Transport Commission, 2018). Both of these options have proven to be 

valuable to both industry and road authorities. However, there are still a limited number of 

vehicle combinations that are catered for by these options. They are also often region (or 

country) specific, and cannot easily be transferred to other PBS projects, such as in South 

Africa or Europe. 

 

A set of simple pro-forma tools for South African car-carriers were presented by Benade et al. 

(2015, 2016a, 2016b). These built on the work of de Pont (2010), but were limited to the low-

speed PBS standards, giving them limited application. Following this, Berman et al. (2015, 

2016) presented a set of lightweight PBS performance prediction tools for both low and high-

speed PBS standards: “Hyperformance” models. 

 

The low-speed performance was calculated using an approach developed by de Saxe (2012), 

and the high-speed performance was calculated using TruckSim, a multi-body dynamics 

software package for commercial vehicles. A set of mathematical models were developed 

using a collection of neural networks (NNs). These models were developed for the case of a 

typical South African 9-axle B-double, illustrated in Figure 1. It was shown that the PBS 

performance could be accurately calculated within seconds using these lightweight models. 

 

These models provide three main benefits over existing approaches:  

1. They provide a means for vehicle designers or road authorities to quickly evaluate the 

performance of a proposed vehicle.  

2. They can be used to develop future pro-forma and blueprint designs.  

3. They can be used to conduct advanced optimisation of vehicle layout and designs for a 

given application or set of constraints. 

 

 

Figure 1 – Typical PBS B-double Configuration (Berman et al., 2016) 
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In this paper, we present an updated, more sophisticated approach to developing lightweight 

PBS Hyperformance models. The same dataset from Berman et al. (2016) will be used in this 

study, allowing for a direct comparison between methods. We also discuss the added benefits 

of using a new proposed method, as well as future work that is planned. 

 

2. Methodology 

 

Gaussian Processes are described by Rasmussen and Williams (2006) for a dataset 𝒟, 

consisting of 𝑛 observations for inputs 𝑥, and outputs 𝑦 as: 

 

 𝒟 =  {(𝑥𝑖, 𝑦𝑖)|i = 1, … , 𝑛}  (1)  

 

Where in the case of PBS performance prediction, 𝑥 corresponds to a set of vehicle 

parameters, such as unit wheelbase, payload centre of gravity (CoG) height, roll stiffness and 

so on. The output variable 𝑦 corresponds to PBS performance in a particular standard, such as 

static rollover threshold or low-speed swept path. The goal is then to learn a function that 

mathematically maps the inputs 𝑥, to the output 𝑦, mapping vehicle parameters directly to 

PBS performance.  

 

A GP is a generalization of the normal or Gaussian distribution, 𝑁(𝜇, 𝜎2), where μ is the 

mean and σ is the standard deviation of the set, is used to overcome the infinite combination 

of possible functions that could describe output 𝑦, in terms of inputs x.  

 

For the case of mathematical regression, such as is required for PBS performance prediction, 

GPs rely on Bayesian linear regression with Gaussian noise (Rasmussen and Williams, 2006): 

 

 𝑓(𝑥) =  𝑥𝑇w,                𝑦 = 𝑓(𝑥) +  𝜀  (2)  

 

Where x is the input vector, w is the weight vector of the linear model, 𝑓 is the function value, 

and 𝑦 is the observed target value. The Gaussian noise is denoted by 𝜀, and follows an 

identically distributed Gaussian distribution with zero mean and variance 𝜎𝑛
2 given as follows: 

 

 𝜀 ~ 𝑁(0, 𝜎𝑛
2)    (3)  

 

GPs rely on a technique called conditional probability, which introduces the notion of a prior 

probability, which is initially set to a zero mean Gaussian. When an observation (in our case, 

PBS simulations) is made, a posterior probability can be calculated, which updates the 

knowledge of the distribution, f. The prior probability is therefore updated, and another 

observation can be made. This is achieved by using Bayes Rule (Rasmussen and Williams, 

2006) as follows: 

 

 posterior =  
likelihood × prior

marginal likehood
,           𝑝( 𝑦𝐴|𝑦𝑏) =  

𝑝(𝑦𝐴)𝑝(𝑦𝐵|𝑦𝐴)

𝑝(𝑦𝐵)
   (4)  

 

All of this is illustrated graphically in Figure 2, with part (a) showing four samples from the 

prior distribution (random and unknown), part (b) shows the update after four observations 
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(PBS simulations) shown by the dotted lines. The grey bounds depict the variance, or 95% 

confidence interval for 𝑓(𝑥) at each point x, with the function mean shown by the solid line. 

 

 

Figure 2 –  Illustration of Gaussian Processes (Rasmussen and Williams, 2006) 

 

The value of this approach for a PBS performance prediction model is that for any number of 

samples, 𝑓(𝑥) gives the mean, or predicted value, as well as the variance or model accuracy. 

It is this posterior probability that sets this approach apart from the previous parametric 

methods using NNs. Where the variance is low, the prediction accuracy is high. This provides 

valuable information to the user about the output of the prediction model, which is not 

available with the use of NNs. The posterior probability allows the user to know whether or 

not the calculated performance value can be trusted or not. 

 

It is also interesting to note that an infinitely-wide, deep NN can be represented by GPs 

(Duvenaud et al., 2014), it is therefore a natural evolution to use GPs in place of NNs for PBS 

performance prediction. 

 

For this case study, we use the same parameters and PBS performance measures from the B-

double in (Berman et al., 2016). The following five high-speed PBS measures were again 

used: Static Rollover Threshold (SRT), High-Speed Transient Offtracking (HSTO), Rearward 

Amplification (RA), Tracking Ability on a Straight Path (TASP) and Yaw Damping 

Coefficient (YD). We also added the following five low-speed standards to the existing 

dataset: Low-Speed Swept Path (LSSP), Tail Swing (TS), Frontal Swing (FS), Maximum of 

Difference (MoD) and Difference of Maxima (DoM). 

 

The dataset consists of 36 470 unique 9-axle B-double combinations, with a total of 48 input 

parameters and the PBS performance values for each of the ten standards. The vehicle 

parameters consist of physical and geometrical properties of the vehicles, such as mass and 

CoG location of the payload, unit wheelbase, suspension properties. These are discussed in 

greater detail in (Berman et al., 2016). The input data were normalised by subtracting the 

mean and dividing the result by the variance of each input parameter. This helped with 

training the models, and to increase accuracy.  

 

The analysis was conducted in Python, using the GPy (pronounced “G-Pie”) Gaussian 

Processes library (GPy, 2012). A single GP model was trained for each standard, giving a 

total of 10 individual models, which when combined, gave the overall resultant PBS 

performance. 
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The accuracy of the prediction models was calculated by comparing the predicted value to 

that of the simulation results from TruckSim for each vehicle combination. Each GP model 

was trained using a small subset of the overall dataset, and then tested for accuracy of 

prediction using the remainder of the dataset. During testing for accuracy, the model predicted 

PBS using the vehicle input data, which was then compared to the TruckSim simulation 

result. 

 

3. Results and Discussion 

The results are shown in Table 1, where predictions from the GP models are compared 

alongside to those of the previous NN from (Berman et al., 2016). It can be seen that the 

probabilistic GP models offer equivalent performance to the NN models, but with a reduction 

in the number of data points required to train the models for each standard. This is a 

significant advantage, as the time required to perform each set of vehicle dynamics 

simulations is approximately six-and-a-half to seven minutes. A reduction of 7 000 

simulations equates to over 31 days of total simulation time alone.  

 

Table 1 – Model Parameters and Performance 

Standard 
No. of 

Params 

No. of 

Training Data 

Points 

Max 

Absolute 

Percentage 

Error (%) 

Average 

Absolute 

Percentage 

Error (%) 

Max 

Absolute 

Error 

NN GP NN GP NN GP GP 

SRT (g) 27 10 000 3 000 5.39 9.69 0.45 0.51 0.03 

HSTO (m) 27 10 000 3 000 5.51 4.08 0.51 0.04 0.01 

RA (-) 27 5 000 3 000 6.41 3.40 0.32 0.17 0.04 

TASP (m) 30 1 000 3 000 0.56 0.20 0.07 0.01 0.01 

YD (-) 27 15 000 3 000 36.06 23.06 4.01 2.69 0.08 

LSSP (m) 22 None 1 000 None 0.01 None 0.01 0.01 

TS (m) 22 None 1 000 None 7.14 None 0.19 0.02 

FS (m) 22 None 1 000 None 102.2 None 1.70 0.10 

MoD (m) 22 None 1 000 None 0.11 None 0.01 2.4e-4 

DoM (m) 22 None 1 000 None 499 None 0.09 0.14 

 

In the cases where the maximum percentage errors are high, particularly the low-speed 

standards, the absolute error is relatively small. The magnitude of the absolute errors is still 

small relative to the performance limits for each standard. The models therefore provide 

acceptable performance without the need to significantly increase the number of data points. 

 

The GP models resulted in a significant reduction in the time required to conduct the vehicle 

dynamics simulations, but they also gave a further reduction in time over that required to train 

the NN models. The time required to train the NN models was approximately 10 days of 

continuous CPU time, and that just for the five high-speed models. The GP models took from 

as little as a few minutes, up to a maximum of 1.5 hours to train each, with the total CPU time 

being approximately five hours. The benefits of this are numerous, with the main benefit 

being the ability to develop and then refine the prediction models for a particular vehicle 
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configuration in significantly less time that it would take to simply develop a single NN 

model. 

 

The performance of the GP models cannot be entirely demonstrated by the table above.  For 

the sake of brevity, only the models for SRT and LSSP will be investigated further. Figure 3 

and Figure 4 below give greater insight into the value of the GP models. Part (a) of the figures 

below shows a histogram of the absolute error in the prediction for SRT and LSSP 

respectively. In both cases, the overwhelming majority of the predictions lie close to zero 

error, with very few predictions having a high error.  

 

Part (b) of the figures gives a representation of the posterior probability or prediction 

confidence. In both cases, the PBS performance measure is shown versus one input variable 

which was normalised. Due to the large number of input parameters, the result cannot be 

visualised for all variables, thus one parameter was selected to illustrate the effect. In both 

cases, it can be seen that near the mean of the input variable (represented by 0), the GP 

models provide high accuracy in predicting performance, with increasing variance further 

away from the mean. 

 

 

Figure 3 – GP Performance for SRT 

 

For each prediction of vehicle performance, a variance is given as described by Equation (4), 

meaning that GPs can be built into the vehicle dynamics performance calculation phase, to 

develop a prediction model with high prediction accuracy across a wide variety of vehicle 

parameters, but for a minimal number of vehicle dynamics simulations.  

 

In practice, this means that a GP model can be trained, starting with only a very small number 

of vehicle dynamics simulations. The model will not be highly accurate, but it can be used to 

calculate the performance of wide array of vehicle input parameters, recording the posterior 

variance for each prediction, the higher the variance, the lower the confidence in the 

performance prediction. The vehicle combinations that result in the highest posterior 

probability can then be used as input into vehicle dynamics simulation (TruckSim in this case) 

to determine the exact performance. These data can then be added to the existing dataset, and 

the GP models can then be re-trained on the updated dataset. In this way, the dataset can be 

incrementally increased, and the GP models updated at regular intervals, with the accuracy 

increasing until it has reached an acceptable level. 
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Figure 4 – GP Performance for LSSP 

 

This approach will result in a robust model that is able to accurately predict PBS performance 

across the entire range of each vehicle input parameter, whilst minimising the CPU time 

required to achieve that result.  

 

4. Conclusions and future work 

We have presented a methodology for the development of lightweight probabilistic prediction 

models for PBS vehicle dynamic performance. The proposed technique for the prediction 

model is the probabilistic approach known as Gaussian Processes. GPs have the benefit of 

giving an indication of the confidence of the prediction, in addition to an accurate 

performance value. GPs are well suited to mathematically describing a complex high-

dimensional problem, such as vehicle dynamics performance, with fewer data than other 

techniques such as neural networks. A case study of a 9-axle B-double was given, presenting 

GP prediction models for the low and high-speed PBS standards. 

 

The unique posterior probability that GPs offer, results in this approach being ideally suited to 

the creation of these so-called “Hyperformance” prediction models for PBS performance. GPs 

can be used to ensure a Hyperformance model will give high accuracy across the full range of 

vehicle parameters, whilst minimising the number of vehicle dynamics simulations required 

to do so. 
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