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Abstract 

This paper presents a stochastic based approach to prevent rollover and jackknifing risk of 
articulated heavy vehicle. First, a specific 6-DOF articulated vehicle model is developed and 
risk criteria are used. The inputs and parameters of the vehicle are modeled by random 
variables or stochastic processes in order to take into account uncertainties. A sensitivity 
analysis by Sobol indices is presented to exhibit influent parameters towards risk and to 
reduce the number of random variables involved in the stochastic model. Then structural 
reliability methods are employed to assess the probability of risk using well known 
FORM/SORM methods and are compared to Monte-Carlo simulation. 
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1. Introduction 

At present time, the truck transport is one of the most important activities of the country’s 
economy. According to the French road safety statistics (ONISR) for year 2008 [1], accidents 
involving heavy vehicles have serious consequences for road users and incidents induce major 
congestions or damage to the environment or the infrastructure at disproportionate economic 
costs. The risk of having dead people in accidents involving trucks is multiplied by 2.4 in 
comparison to the same risk computed for accidents involving only light vehicles, mainly 
because of the important gross mass difference between light vehicles and trucks. Many real 
time active safety systems have been developed to control vehicle stability in dangerous 
conditions: rollover, jackknifing, roadway departure...  

Nevertheless all these systems don’t detect and warn drivers early enough for preventing risky 
situations. Consequently, the aim is to develop a driving support system, embedded in the 
heavy vehicle and communicate with on road equipment’s, to warn about risk’s level early 
enough. 

Little work is available in the literature concerning combined probabilistic analysis and 
vehicle dynamics studies. It’s mostly deals with suspensions analysis under uncertain 
characteristics and loading [2]. One Icelandic study [3] covers the wind-related accident issue 
with reliability analysis, but no warning system has been envisaged. More recently, classical 
reliability methods are deployed in [4], [5] to prevent rollover risk of single heavy vehicle and 
roadway departure risk of lightly vehicle. 

2. Principle of the proposed approach 

This paper proposes a probabilistic method for identifying dangerous situations of risk of 
articulated heavy vehicle. To this end, we develop a stochastic heavy vehicle model derived 
from a 6−DOF deterministic heavy vehicle model. Next, two safety criteria related to rollover 
and jackknifing risk are introduced. In practice, parameters involved in the model are not 
known with absolute precision. Thus, it’s necessary to take into account the random nature of 
these parameters by modeling them as random variables or stochastic processes. A part of the 
work presented here aims to exhibit the relevant entry variables that must be known to be 
representative of the system uncertainties. So, we perform and compare two different 
sensitivity analysis methods in order to identify influent parameters and to reduce the number 
of stochastic parameters involved in the stochastic model. Finally, probability of failure is 
assessed through standard structural reliability methods by using the well-known 
FORM/SORM methods. 

3. Deterministic articulated heavy vehicle model 

This section presents the deterministic model of an articulated heavy vehicle and its validation. 
Then safety criteria, respect to rollover and jackknifing risks, are chosen to define the 
riskiness of a situation. Finally, a validation is conducted upon the safety criterion values by 
comparison with a complete heavy vehicle simulator Prosper [8]. 
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3.1 Heavy vehicle dynamics model 
The framework of this study is focused on an articulated heavy vehicle composed of a rigid 
tractor with 2 axles and a rigid semitrailer with 3 axles. These two components are linked at 
the fifth wheel as shown in figure 1. The tractor is the superposition of an unsprung mass 
(axles and tires) and a sprung mass (cabinet and chassis). The trailer is composed of an 
unsprung mass (axles and tires) and a sprung mass (chassis and trailer). Unsprung and sprung 
masses are connected together with suspensions. In this study, the following two basic 
assumptions are used: 

1. The cornering maneuver realized at constant vehicle speed, 
2. No breaking and acceleration actions by the driver. 

Under these hypotheses, the considered dynamic component of the motion are both the yaw 
tractor, the translation of the vehicle in the horizontal plane, the tractor roll angle and the 
articulation angle between the tractor and the trailer. To construct the model of the heavy 
vehicle we complete the previous assumptions with the following ones:  

3. The pitch and bounce dynamics motions are neglected, 
4. Tractor and trailer frames are modeled as rigid bodies, 
5.  The total axles with axle suspension are reduced to roll suspension only. 

To obtain the dynamics equations of simplified heavy vehicle, the classical Lagrangian 
formulation is used. 

	  

Figure	  1	  –	  Articulated	  heavy	  vehicle	  

The proposed model is based on 6 degrees of freedom (DOF) yaw-roll model derived from a 
5−DOF [6], [7]. To get the dynamics equation of the model we consider the motion the two 
sprung masses in the coordinate system (see figure 2). (XE,YE,ZE) is the earth-fixed coordinate 
system, (Xt ,Yt ,Zt ) and (Xst ,Yst ,Zst ) are respectively the tractor and semi-trailers’s sprung 
masses coordinate systems fixed at the center of gravity (C.G) of each body. (Xu,Yu,Zu) is the 
tractor’s unpring mass coordinate defined at the center plane of the front axle with Zu parallel 
to ZE. The relative motion of (Xu,Yu,Zu) with respect to the earth fixed coordinate system 
(XE,YE,ZE) describes the translation motion of the tractor in the horizontal plane and its yaw 
motion along the ZE-axis. The roll motion is described by motion of the coordinate system 
(Xt ,Yt ,Zt ) associated with the coordinate system (Xu,Yu,Zu). The articulation angle between the 
tractor and trailer can be described by relative motion of the coordinate (Xt ,Yt ,Zt ) with respect 
to the coordinate system (Xst ,Yst ,Zst ). 
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Figure	  2	  –	  Systems	  of	  coordinate	  

From these coordinate systems, we introduce the generalized coordinate system (xE, yE, zE, 
! ,! , ! f ), defined as follows:  

• xE  is the position of the tractor C.G. in the direction of the XEaxis,  
• yE is the position of the tractor C.G. in the direction of the YE axis,  
• zE is the position of the tractor C.G. in the direction of the ZE axis,  
• ! is the yaw angle of the tractor,  
• !  is the roll angle if the tractor, 
• ! f  is the relative yaw angle, i.e., angle between tractor and trailer at fifth wheel. 

The vector equation describing the dynamics of the heavy vehicle is obtained using the 
Lagragian formulation. It’s of the form: 

 M (q(t), p)!!q(t)+C(q(t), !q(t), p) !q(t)+G(q(t), p) = Fg (p,! (t)), t " 0  (1) 

where q = (x, y, z,! ,",! f )
t is the generalized coordinates vector in which we set to simplify : 

x = xE, y = yE and z = zE ; Fg is the vector of generalized forces, M is the inertial matrix that is 
symmetric positive definite,  C(q, !q) !q  is the combined Coriolis and centrifugal forces and G is 
the gravity vector. The generalized forces Fg  represents the effect of external forces acting on 
the vehicle body. These later result from the tire-road interface and suspensions defined in 
terms of longitudinal and lateral tire forces and vertical forces. Generalized forces depend on 
steering angle ! . We use a specific steering angle profile (hook maneuver), which allows 
observing rollover and jackknifing risks. All heavy vehicle’s parameters, defined in Table 1, 
are gathered in the vector p of dimension np =25.  
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Table 1 – Main heavy vehicle characteristics 

 

Then, we rewrite the vehicle model as a first order differential equations (ODE) system as: 

 !u(t) = f (t,u(t),! (t)), t " 0  (2) 

where  u = (q
t , !qt )t  and f is a function from  ! + !!

12 !!np !!  into  !12 . Using classical 
Runge-Kutta method of order 4 solves this equation. Such a model easily brings forth useful 
insights of dynamic phenomena (yaw-roll) with fast computation time, compared to mulibody 
approach. The system is simulated and validated in the MatLAB environment with a specific 
ODE Fortran solver. Parameters are obtained from Prosper truck simulator [8]. In practice, 
heavy vehicle simulation requires only 50ms compared to a quasi real-time simulator 
(Simulink, Prosper, TruckSim...). These improvements allow to embed our heavy vehicle 
simulator into sensitivity and reliability algorithms. 

3.2 Safety criteria 
The framework of this work is focused on two risk situations: 

1. The rollover, which is a lateral instability due to a lateral load transfer. 
2. The jackknifing, which is a loss of control that causes the rotation of the tractor with 

respect to the semitrailer. 
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For each risk we propose and choose a safety criterion to assess and detect dangerous 
situations. Rollover is a well-known phenomena and its analysis is spread enough in the 
literature [9]. Unfortunately, jackknifing risk is a more complicated phenomenon and there 
are few safety criteria. 

Rollover criterion 
Rollover is one of the most frequent accidents (20%) and causes significant damages to the 
vehicles and injuries to its driver and passengers. Several anti-rollover systems and rollover 
warnings systems were developed to assist and warn the driver [10], [11]. Several rollover 
indicators can be found in the literature : SRT (Static Rollover Threshold), RPER (Rollover 
Prevention Energy Reserve), CSV (Critical Sliding Velocity)... 

In our study, rollover risk evaluation is based on the maximum of a rollover risk indicator, 
namely the load transfer ratio (LTR), which corresponds to the load transfer between the left 
and the right sides of the vehicle. The resulting expression of this indicator is defined as: 

LTR =
Fz,l ! Fz,r
Fz,l + Fz,r

 (3) 

where Fz,l  and Fz,r are respectively the left and the right normal forces. In practice, when LTR 
is equal to 0, the heavy vehicle has stable roll dynamics. The risk becomes high as this 
indicator goes towards ±1. Ackermann [11] simplified the LTR criterion, when overlooking 
unsprung mass, as follows: 

 
LTR = 2m2

s

m2Tw,3g
hr + h2 cos!( ) !!y + v0r " h2!!!( ) + gh2 sin!#$ %&  (4) 

where Tw,3, hr, v0,h2,ms2, r, g are defined in Table 1 andm2 = m2
s +m2

u . Kamnik [12] proposed 
an improved nonlinear rollover criterion for articulated heavy vehicle called LLT. This later is 
accurate and coincides to the Ackermann criterion when neglecting unsprung mass 
contribution. 

Jackknifing criterion 
Jackknifing is characterized by a loss of stability in the yaw motion of the articulated system. 
It occurs for several reasons: 

1. When the rear wheels of the tractor are blocked, 
2. When the vehicle applies in turn the brakes abruptly, 
3. When the road is slipping (low adherence). 

This phenomenon is more frequent when then trailer is empty or when the load is badly 
distributed in the trailer. Theoretically, jackknifing is detected the relative angle yf  is greater 
than ! / 2 . Jackknifing is characterized by the friction indicator [13]: 

µmin =
Fy

Fz cos! f

 (5) 

 

where Fy and Fz are respectively the lateral and normal road forces applied to the heavy 
vehicle. When µmin  the heavy vehicle remains stable.  
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In our work, we use the criterion proposed in [14] and based on the estimation of the 
articulation yaw angle ! f . The jackknifing criterion is defined: 

 Cm = !r1.(r2 ! r1) = !r1.r  (6) 
where r1 is the vector position of the tractor fifth wheel and r2 is the vector position of rear 
trailer axle. The heavy vehicle is on jackknifing situation when Cm ! 0 . 

4. Sensitivity analysis 

Among all the parameters of the mechanical model, some present a marked random 
variability. Therefore it is crucial for the credibility of the application to take into account this 
reality via a suited stochastic modeling. The object of this section is to identify the minimal 
family of variables that must be considered as random using a sensitivity analysis. We 
investigate a global sensitivity method is performed by computing the Sobol indices. 

4.1 Global sensitivity 

The parameters are gathered in the vector  p!!
np  modeled as a continuous  !

np -valued 
random variable denoted P = (P1, ...,Pnp ) for which the following hypotheses are made : 

H1.  its components are mutually independent, 
H2.  two distributions are alternatively considered for each of its components : a truncated 

Gaussian distribution and an uniform distribution, 
H3.  all the components of P follow simultaneously the same type of distribution, 
H4.  all the components of P have the same coefficient of variance. 

Each random variable Pi  verifies: 

E Pi[ ] = pi
Var Pi[ ] = k.pi

 (10) 

where Var[Pi] and k are respectively the standard deviation and the coefficient of variance of 
Pi. In the following, this later is taken equal to 1% (0.01). In order to take into account 
perturbations on steering angle ! , this one is modeled as bounded stochastic process of the 
form [5]: 

!(t) = " (t)+ #(t)  (11) 
with : 

!(t) = e.sin v.t + s.W (t)+ 2"U( ), t # 0  (12) 

where e, v, s are given real positive constants, W is a standard real Wiener process and U is a 
random variable uniformly distributed on [0,1] and independent of W. With these stochastic 
modeling, the response system u is now a vector random process U which depends on (P,! ) 
and the control variable r becomes a random process R depending on P and ! : 

R(t) = S(P,!(t)) = S(P1,...,Pnp ,!(t))  (13) 

 

The Sobol index si
R [18], [19] associated with the random variable Pi is a deterministic 

function of t defined from the conditional expectation E[R|Pi], according to the formula: 
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si
R =

Var E R | Pi[ ]!" #$
Var R[ ] = Vi

V
 (14) 

where Var(.) denotes the variance. From this definition, si
R ranges from 0 to 1. A small value 

means that uncertainty on Pi has few influence on the variability of R and consequently, in 
this case, Pi can be considered as a deterministic parameter. On the contrary if si

R  is closed to 
1, Pi must keep its status of random variable. Second order indices reflect the interaction 
between two parameters. They are defined 

By : 

si, j
R =

Var E R | PiPj!" #$( )%Vi %Vj

Var R( ) =
Vi, j %Vi %Vj

V
, i & j  (15) 

  
Higher orders, until the np-th order, are defined in the same way. All these sensitivity indices 
satisfy the fundamental property: 

si
R

i
! + si, j

R + ...+ si1,...,inp
R = 1

i1<...<inp

!
i< j
!  (16) 

  

Hence, the analysis starts with the first order indices calculation. Then, if si
R

i
! "1  then all 

the higher orders are negligible. Otherwise, interactions exist in the safety criterion model, 
and further calculations are needed. The sensitivity of R with respect to ! is estimated from 
the Iooss’s work [20]. 

Sobol’s indices are computed with a huge size sample 106 to obtain good first order indices. 
In fact sums of Sobol indices, plotted with blue line on figure (3-a) and (3-b), are closed to 1. 
Figures (3) show the obtained results for the rollover and jackknifing criteria, using the Sobol 
sensitivity analysis with perturbations on the steering angle. Results exhibit that only 6 
parameters d3, l2, l3, Tw3, hr, v0 are really influent on rollover and only 5 parameters d3, l2, l3, 
hr, h2, v0 on jackknifing.  

  
(a) Rollover case (b) Jackknifing case 

Figure	  3	  –	  Evolution	  of	  first	  order	  Sobol	  indices 

4.2 Conclusions 
With both methods of sensitivity analysis, we get quite the same influent parameters. Global 
sensitivity gives relevant results and allows taking into account the perturbation on steering 
angle. However here, for simplicity and to apply standard reliability analysis, the steering 
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angle perturbation is supposed is not taken into considerations. As a result, the only random 
parameters considered are at most the six random variables P1 = v0, P2 = hr, P3 = l2, P4 = l3, P5 
= h2, P6 = Tw,3. 

5. Reliability analysis 

5.1 General principle and statement of the problem 
In the following the vector random parameter P=(P1, ...,P6)T is assumed to be defined on the 
probability space (! ,F,P), where ! is a sample space, F is ! -algebra on ! and P is a 
probability measure on F. According to (H1)-(H4) hypotheses (cf. section 4.2), the 
distribution is known and admits a probability density denoted in that follows fp. Let Z be the 
safety margin associated with the control variable R, such that: 

Z = r0 ! maxt"[0,T ]
R(t)  (17) 

  
Where r0 is a given limit value and T is the observation interval. This real random variable is a 
function of P: 

Z = G(P)  (18) 
  
Where G is the limit state function associated with the safety criterion chosen for the study. 
It’s a measurable mapping from R6 into R which defines two complementary subset of R6, Ds 
and Df, such that: 

 

Ds = p!!6 :G(p) > 0{ }
Df = p!!6 :G(p) " 0{ }

 (19) 

  
Called respectively the safety domain and the failure domain. Two events are associated with 
these domains, the safety event Es and the failure event Ef, such that: 

Es = ! "# :G(P(! )) > 0{ }
Ef = ! "# :G(P(! )) $ 0{ }  (20) 

  
and which verify Es !Ef =" Es #Ef =$ . Once known the pdf fP and defined the events 
Es and Ef, an import objective of the reliability analysis is then to evaluate the probabilities 
P(Es) and P(Ef) (respectively called safety probability and failure probability) given by : 

Ps = P(Es ) = fP (p)dp
Ds

!
Pf = P(Ef ) = fP (p)dp

Dd
!

 (21) 

  
And such that Ps=1-Pf. In practice, an exact calculation of Pf is not possible and a Monte-
Carlo procedure must be used. In classical reliability approach, it is customary to transform 
the initial formulation into a standard formulation in which the vector of the random 
parameters follows a standard Gaussian distribution. This leads to construct a regular 
transformation T, with inverse T-1, such the vector random variable P can be written P=T-1(T), 
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where Y is a R6-valued standard Gaussian random variable. Carrying out the change the 
change of variable y=T(p), probability of failure becomes : 

Pf = !6 (y)dy
" f

#  (22) 

  
where !6 is the standard Gaussian pdf on R6 and ! f = T (Df ) . 

FORM (First Order Reliability Method) approximation consists in replacing the failure 
domain ! f  by a half-space !L

f  tangent to ! f  at the design point M* (see figure 4). Using this 
approximation, the failure probability Pf can be approximated by: 

Pf ! Pf
L = "6 (y)dy = #($%HL )

&L
f

'  (23) 

  

	  

Figure	  4	  –	  Systems	  of	  coordinate	  

where !  is the one-dimensional standard Gaussian distribution function and !HL  is the 
Hasofer-Lind index [15] defined by : 

!HL = minM"# f

OM = OM *  (24) 

  
In practice, !HL  is computed by the Rackwitz-Fiessler (iHLRF) algorithm [15]. It is possible 
to approximate the limit state function by a quadratic surface at the design point, which leads 
to the SORM (Second Order Reliability Method). In this case, the probability of failure can be 
approximated by the Hohenbichler formula: 

Pf ! Pf
Q = "6 (y)dy = #($%HL )

&Qf
' 1+ "(%HL )

#($%HL )
( i

i
)  (25) 
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Where ! i  denote the main curvatures of the limit-state function at M*. 

Monte-Carlo method is employed to estimate the “exact” probability of failure. A set of 106 
simulated realizations of P is used for an initial velocity ranges from 20m.s-1 to 24m.s-1. Each 
calculation requires about one hour on a standard PC. We use the MatLAB toolbox FERUM 
[21] to compute PfL and PfQ. Figures (5) compares the probabilities of failure given by 
Monte-Carlo procedure and the FORM/SORM methods. 

  
(a) Rollover case (b) Jackknifing case 

Figure	  5	  –	  Evolution	  of	  probability	  of	  w.r.t	  initial	  velocity	  and	  criterion	  threshold 

 

6. Conclusion 

An application of structural reliability methods to road safety domain is proposed, with a view 
to develop a heavy vehicle rollover and jackknifing warning systems. Such methods consider 
the uncertainties in the model input to deduce a failure probability (i.e. here the probability to 
violate a safety criterion). Hence it seems appropriate to handle with the random variability 
existing in the triptych driver-vehicle-infrastructure. Compared to other warning system 
studies that rely on deterministic safety criteria, the major advantage of the stochastic 
approach presented here consists in its direct computation of a risk index, since Pf represents 
the probability to violate the safety criterion. Thus the obtained result is the evolution of risk 
against speed, which would have been hard to define with a deterministic approach. This 
evolution of risk is valuable decision support tool for the alarm triggering.  
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