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Abstract 

 

Slow moving vehicles can cause traffic congestion and prolonged intersection clearance times. 

Adequate acceleration and gradeability performances are hence essential to keep vehicular traffic 

flowing in a smooth manner and to minimize accidents. While acceleration tests are relatively 

straightforward to perform, gradeability tests have some inherent difficulties associated with 

them. One such difficulty is the seemingly impossible scenario of having all possible road grades 

available for testing. Computer simulation of acceleration and gradeability performances hence 

appears appealing as they are closely related, except for the fact that gradeability is a steady state 

calculation and therefore the static weight of a vehicle is used rather than the effective weight.  

 

In this paper, an Artificial Neural Network (ANN) based method is used to predict gradeability 

and acceleration performances of transit buses. The ANN method used here has an automatic 

means for generating empirical formulae consisting of product units and their sums (if desired). 

This alleviates the most common problem associated with Neural Networks – “Neural Networks 

are like black boxes and are hard to interpret!”    

 

Often, it is also of interest to know the range of possible vehicle configurations that can provide a 

desired acceleration or gradeability performance. To this effect, an inversion method based on 

non-linear programming has also been examined. The result of such an inversion is a set of bus 

design parameters that can be used to achieve the desired performance.                  
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1.   INTRODUCTION 

 

In the United States, the primary evaluations used for measuring vehicle performance are 

acceleration, gradeability and top speed. Acceleration capability of a vehicle can be measured 

either in terms of the amount of time needed by a vehicle to reach a given speed or as 

acceleration rates at given speeds. Gradeability, on the other hand, is defined as the maximum 

grade a vehicle can negotiate at any given speed. Adequate acceleration and gradeability 

performances are essential to keep vehicular traffic flowing in a smooth manner and to reduce 

accidents. Slow moving vehicles can cause traffic congestion and prolonged intersection times.  

 

Both acceleration and gradeability tests are technically simple. However, test track requirements 

for either test can be prohibitive in terms of costs of construction and maintenance. Computer 

modeling of acceleration and gradeability behaviors is hence very appealing. In this study, a 

Artificial Neural Network (ANN) model based on a modified version of Saito et al.’s RF5 (Rule 

extraction from Facts, version 5) algorithm was developed to predict acceleration performance of 

transit buses. This model has an in built mechanism for generating simple equations relating 

inputs to outputs and thus alleviates the black-box nature of neural networks.  

 

Acceleration and gradeability performances are closely related, except for the fact that 

gradeability is a steady state calculation. Hence, gradeability performance can be calculated from 

acceleration values at a given speed.     

        

2.   MATHEMATICAL APPROACH 

 

Block diagram of a simplified vehicle system is shown in Figure 1 (Kulakowski, 2003).  In this 

diagram, a heavy vehicle is represented by a vector of design parameters, θ = (θ1, θ2, …….θp) 

that could include parameters such as length, width, height, wheel base, axle loads, engine power  

etc. The other two inputs to the vehicle block are driving vector, u = (u1,u2,…….ur) and the road 

vector, x = (x1,x2,………xk). Driving vector includes actions of the driver such as steering, 

braking and accelerating, while road input vector comprises of road geometry, surface friction, 

pavement roughness etc. The output signal is a vector, y = (y1, y2,…….,yn), that includes vehicle 

performance characteristics. For the purposes of this study, y is a scalar as only one output i.e. 

acceleration value at a given speed is modeled.  

 



 
 

Figure 1. Block diagram of vehicle system. 

 

Mathematically, the relationships can be written in vector form as  

 

y = F(u,x,θ)       (1) 

 

If driver input, u and the road input, x, are kept constant, they can be effectively eliminated from 

active inputs affecting vehicle performance characteristics i.e. y=F(θ). The knowledge of 

transformation F is of great value in developing and implementing vehicle regulations since we 

can then predict to a reasonable degree the performance of a vehicle given its design parameters. 

Also, if F is known accurately then we can apply reverse engineering concepts (assuming inverse 

exists) to get corresponding vehicle design parameters that would result in a desired acceleration 

performance. This can be expressed as 

 

θ* = F
-1

(y*)        (2) 

 

where, θ* is a vector of vehicle design parameters that would ensure desired acceleration 

performance given by y* .  

 

3.   FORWARD MODEL USING ARTIFICIAL NEURAL NETWORK 

 

In this study, an artificial neural network based method called RF5 (Rule extraction from Facts 

version 5) was chosen to model the vehicle transformation, F. This was done because of the 

universal function approximation and other favorable characteristics offered by neural networks 

(Muthiah, 2006). RF5 is a connectionist method for numerical law discovery (Saito et al., 1997). 

It consists of a combination of 3 techniques: 

1) Use of product unit networks  

2) Employment of a second-order learning algorithm called BPQ  

3) Adoption of Rissanen’s Minimum Description Length (MDL) criterion for finding an 

adequate number of hidden neurons 

 

Let x be an n-dimensional input vector and y be a target value corresponding to x. RF5 is capable 

of discovering a class of numeric laws that can be expressed as   
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where parameters c0, ci and wij are real numbers and H is an integer. Now if the inputs are 

positive, then we can write equation (3) as 
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Equation (4) can be regarded as the feed-forward computation of a 3-layer (including input layer) 

neural network where the activation function of each hidden unit is the exponential function, 

namely exp(s) = e
s
, 

 
and the output layer has just one linear neuron. H, wij and ci denote the 

number of neurons in the hidden layer, the weights between an input j and hidden neuron i, and 

the weights between the hidden neuron i and the output unit respectively. The first term c0 

represents the bias of the output neuron. The hidden neurons have no biases. Saito’s RF5 

employs a second-order quasi-Newton learning algorithm called BPQ. 

 

One design issue with neural networks is finding the number of neurons, H, in the hidden layer. 

RF5 uses Rissanen’s MDL criterion for this purpose.  

)mlog(N
~

.)MSElog(m.MDL 5050 +=    (5) 

where m is the number of samples, MSE is the mean square error, N
~
 is given by  

1
~

++= HnHN       (6) 

 

Using the ANN solution with the lowest MDL ensures an optimal balance between model 

accuracy (MSE) and model complexity (number of hidden neurons, H). The main advantage of 

RF5 is that most numerical law discovery methods are incapable of finding equations like (3) 

without preparing appropriate prototype functions before hand. Preparing such functions 

essentially amounts to pre-guessing the form of the solution! RF5 is also resistant to the presence 

of irrelevant input variables and noise. 

 

In this study, few modifications were made to the original RF5 algorithm. Normalization of 

inputs, i.e. centering by subtracting the mean value and dividing by standard deviation is a 

standard procedure used in neural networks to avoid an ill-conditioned error surface arising out 

of a vast difference in magnitude between inputs. However, this renders input values in both 

positive and negative domain. Since equation (4) requires logarithmic values of inputs, this 

would result in complex values for the output. To circumvent this problem, in this study, all 

inputs were normalized by dividing with their respective means. This results in normalized input 

values close to one (assuming input variances are not large) and is very suitable for optimization 

on the error surface (Oost, 2002). The second modification was to use Levenberg-Marquardt 

algorithm (Trainlm in MATLAB Neural Network Toolbox) for training instead of BPQ 

algorithm. Trainlm is known to have the fastest convergence on function approximation 

problems for networks that contain up to a few hundred weights (Mathworks, 2005).     

 

4.   NON-LINEAR PROGRAMMING BASED INVERSE MODEL 

 

For us to be able to predict the required input design parameters of a diesel transit bus for a 

desired acceleration performance, the trained neural network needs to be inverted. However, the 

inverse problem as given in equation (2) is an ill-posed problem since the inverse mapping is 

usually a one-to-many mapping. In general, the inverse problem is locally ill-posed in the sense 

that it has no unique solution and globally ill-posed because there are multiple solutions. One 

way of tackling this problem is to use non-linear programming (NLP) techniques (Lu et al., 

1999). If we consider the problem of inverting the trained feed-forward network, y = F(θ), the 



problem is to basically find an input vector θ which yields a given output .y  To find various 

designated inversions for a given output, the inverse problem is formulated as: 

 

Minimize 

)(P θ         (7) 

 

Subject to equality constraint 

0y)F(W; =−θ       (8) 

and inequality constraint 

γθρ ≤≤        (9) 

where P(θ) is the objective function to be minimized, ρ  and γ  are the constant vectors 

representing the lower and upper bounds for the inputs, W is the weight matrix of the forward 

ANN and θ is the input vector. The equality constraint ensures that the forward mapping of the 

ANN is satisfied. The inequality constraint on the input vector is introduced to restrain the 

obtained inversions within a meaningful range of network inputs i.e. design parameters that are 

expected to result in a transit bus! The nature of the objective function determines the kind of 

inversions that are computed. In this study, objective function was chosen as P(θ) = || θ – r ||
2  
, 

so as to result in an inversion that is nearest to a reference point r.  The reference point vector 

was sequentially selected as the input vector corresponding to each bus that was used for training 

the forward ANN. Hence, in this manner, a number of inversions (equal to the total number of 

buses in the training set) were obtained. After rejecting the solutions wherein the algorithm had 

not converged, the solution that was closest to a ‘known’ bus in terms of Euclidian distance was 

selected as the optimal solution. It is felt that this shall result in a configuration that would give 

the desired output with only minimum changes being made to the configuration of a ‘previously 

known’ bus. This feature is desirable from the point of view of manufacturability of the ‘optimal 

bus configuration’.      

 

5.   DATA USED FOR MODELING  

 

Acceleration test data collected on 110 two-axle diesel transit buses, from model year 1990 to 

2004, at Pennsylvania Transportation Institute (PTI) have been used in this study. Data were 

obtained for a total of 21 inputs variables and 4 outputs. The four outputs include acceleration 

values at speeds of 16, 32, 48 and 64 km/hr. The salient characteristics of the data are given in 

Tables 1 and 2. The input variable ‘Weight to Power Ratio’ is a calculated ratio of ‘Seated Load 

Weight (SLW)-Total’ and ‘Engine Power’.  

 

Table 1. List of output variables. 

 

Sr. 

No. 

Output Min. Max. Mean Std. 

Dev. 

1 Acceleration at a speed of 16 km/hr, (m/s
2
) 0.70 2.19 1.31 0.34 

2 Acceleration at a speed of 32 km/hr, (m/s
2
) 0.60 1.80 1.05 0.27 

3 Acceleration at a speed of 48 km/hr, (m/s
2
) 0.46 1.52 0.81 0.22 

4 Acceleration at a speed of 64 km/hr, (m/s
2
) 0.27 1.28 0.58 0.20 

 



 

 

 

Table 2. List of input variables. 

 

Sr. 

No. 

Input Min. Max. Mean Std. 

Dev. 

1 Length (m) 6.17 12.54 9.99 1.75 

2 Width (m) 2.16 2.69 2.49 0.08 

3 Height (m) 2.56 3.50 3.05 0.17 

4 Wheel Base (m) 3.10 7.59 5.44 1.22 

5 Front Overhang (m)  0.69 3.04 1.67 0.69 

6 Rear Overhang (m) 0.762 5.54 2.86 0.52 

7 Ground Clearance (m) 0.08 0.34 0.22 0.05 

8 Curb Weight - Front (kN) 14.02 46.06 30.47 8.65 

9 Curb Weight - Rear (kN) 19.58 89.89 53.21 20.82 

10 Curb Weight - Total (kN) 34.26 128.87 83.69 27.83 

11 Seated Load Weight - Front (kN) 14.15 57.32 35.68 11.65 

12 Seated Load Weight - Rear (kN) 24.59 109.96 68.72 22.55 

13 Seated Load Weight - Total (kN) 41.16 158.24 104.35 32.75 

14 Gross Vehicle Weight - Front (kN) 14.02 64.97 39.73 14.76 

15 Gross Vehicle Weight - Rear (kN) 24.59 123.84 75.55 25.63 

16 Gross Vehicle Weight - Total (kN) 41.61 192.95 115.33 39.55 

17 Axle Ratio 2.9 6.6 4.4 0.7 

18 Engine Power (kW) 123.09 223.8 166 25.22 

19 Engine Displacement (cm
3
) 4250.8 10831.8 7211.5 1368.3 

20 Wheel Diameter (m) 0.41 0.57 0.53 0.06 

21 Weight to Power Ratio (kN/kW) 0.26 0.92 0.62 0.15 

 

6.   INPUT SELECTION 

 

Input selection is of crucial importance for any model. If relevant inputs are neglected, then 

model accuracy is sacrificed. On the other hand, inclusion of many irrelevant inputs can result in 

unnecessary complexity, wastage of computing resources and decrease in model accuracy due to 

misleading of the learning process. So a proper balance is required between these two conflicting 

requirements. A two stage approach has been used for input selection in this study. The first 

stage involves use of correlation matrix to select those inputs that are least correlated with other 

inputs. A cutoff value magnitude of 0.7 was chosen for the correlation coefficient since a value 

of 0.7 means that less than 50 % of the variation in one variable can be explained by the other 

(Muthiah, 2006). The second stage uses Information Theoretic Subset Selection (ITSS) method 

that is based on Shannon’s information theory (Sridhar et al., 1998).    

 

Shannon’s information theory provides a means for quantifying the information content of any 

input vector x. Let, x take on M discrete values x1, x2……xM. If Ni is the number of occurrences 

of the vector xi in the data set and N is the total number of samples in the data set, then the 

probability that x takes a value xi can be defined as  
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The entropy or information presented by variable x can then be written as  

)ln()( i

i

i ppH ∑−=x       (11) 

The joint entropy of two vectors x and y (output) can now be similarly defined as  
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where pij  is the probability that x will take on the value xi and y will take on the value yj 

simultaneously. The entropy of y given x, H(y|x), is a measure of the information in the vector y 

when x is known. It can be shown that  

)(),()|( xyxxy HHH −=      (13) 

Sridhar et al. then define an asymmetric dependency coefficient (ADC), U(y|x) that measures the 

dependency of y on x  
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ADC measures the extent to which knowledge of x provides information about y. Since the input 

variables in this study are continuous, the input domain was divided into a finite number of 

regions (called bins) within which p(x) is assumed to be constant. By doing this, the 

methodology described above for discrete variables was made applicable to continuous variables. 

 

The general methodology followed in ITSS is given below: 

1) Calculate U(y|x) 

2) Generate a candidate input subset xsp and determine U(y|xsp) 

3) Check if the candidate subset is satisfactory using equation (15) where ε  is an 

acceptable small loss of information in the input space with respect to predicting 

the output. 

ε<− )|()|( xyxy sp UU      (15) 

4) If candidate subset is satisfactory then stop, else go to step (2)  
 

In this study, use of correlation matrix resulted in reducing the number of inputs from the 21 

(given in Table 2) to 9. These were width, height, wheel base, rear overhang, ground clearance, 

seated load weight –total, axle ratio, engine power and displacement. Using ITSS method with 5 

bins, this was further reduced to 7 inputs with the rejection of width and rear overhang.       

 

7.   RESULTS AND DISCUSSION 

 

Data pertaining to a total of 99 buses (90%) were used for training the ANN while the remaining 

data for 11 buses were used for testing. The forward neural network model was run with the 7 

inputs selected using the ITSS method. The number of neurons in the hidden layer was varied 

from 1 to 5.  Five simulation runs were conducted for each hidden neuron number setting. The 

optimal model was then selected using the Minimum Description Length (MDL) criterion as 

given in equation (5). For all four outputs listed in Table 1, MDL criterion resulted in just one 

neuron in the hidden layer. Hence using equation (3), there were only 2 terms in the empirical 

formulae for acceleration values. The obtained formulae are of the following form 



 

)DPrWGwh(ccA gfedcba

10 +=          (16) 

where  

 

A   - acceleration in m/s
2 

c0 and c1  - coefficients in m/s
2
 

h   - normalized height 

w   - normalized wheel-base 

G   - normalized ground clearance 

W   - normalized seated load weight-total 

r   - normalized axle ratio 

P  - normalized engine power 

D  - normalized engine displacement 

a to g   - respective exponents 

 

The values obtained for the exponents of 7 normalized input variables and the two coefficients 

are as shown in Table 3. 

 

Table 3. Exponents and coefficients obtained using RF5 algorithm.  

 

Exponent/ 

Coefficient 

Acceleration 

(at 16 km/hr) 

Acceleration 

(at 32 km/hr) 

Acceleration 

(at 48 km/hr) 

Acceleration 

(at 64 km/hr) 

a 0.1225 -0.2506 -0.7361 -1.1350 

b 0.4892 0.4419 0.2653 0.1428 

c 0.2502 0.2375 0.2218 0.2791 

d -1.6110 -1.6231 -1.4010 -1.3415 

e 0.5231 0.4978 0.3338 0.2776 

f 0.3910 0.5535 0.8015 1.1112 

g -0.1744 -0.0402 0.0890 0.0755 

c0 0.5566 0.4373 0.4070 0.3437 

c1 0.6734 0.5510 0.3519 0.1937 

 

The following observations can be made from Table 3: 

 

1) Seated load weight stands out as the most important variable and its exponent (‘d’) is 

negative since acceleration capability decreases with increasing weight.   

2) As expected, ground clearance (exponent ‘c’) and engine displacement (exponent ‘g’) 

seem to have little impact on acceleration capabilities of a bus. 

3) The influence of vehicle height (exponent ‘a’) on acceleration values increases with 

increasing speed. This is due to the fact that aerodynamic drag force which is 

dependent on vehicle frontal area is negligible at low speeds and increases with 

speed. 

4) The exponent (‘b’) for wheelbase decreases with increasing speed. This probably 

results from the fact that longitudinal load transfer plays a more important role at high 

acceleration values which occur at lower gears i.e. lower vehicle speeds. 



5) The value of the exponent (‘e’) for axle ratio decreases with increasing speed. Axle 

ratio has a two fold effect on net tractive force. Firstly, it magnifies the torque coming 

from the engine to the wheels. Secondly, it plays a major part in determining the loss 

of tractive force due to inertia of rotating components (engine and drive-train). Since 

higher speed corresponds to a numerical lower axle ratio, the results seem consistent 

with known theory.   

6) Engine power (exponent ‘f’) becomes a dominant factor as the speed increases. It is 

interesting to note that the ratio of the exponents for seated load weight and power 

approaches -1 as speed increases i.e. acceleration becomes proportional to power to 

weight (P/W) ratio. The P/W ratio is commonly used to denote acceleration capability 

(Gillespie, 1992).   

 

Figure 2 shows a sample comparison plot between the actual acceleration values and the ANN 

output values on the test set of 11 buses for the “Acceleration at a speed of 48 km/hr” case.  
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Figure 2. Comparison plot – Target output and ANN output. 

 

Once the forward ANN model was developed, it was inverted using the nonlinear programming 

technique discussed in section 4. A sample simulation was carried out to search for a bus 

configuration that would give a desired acceleration of 1.0363 m/s
2
 at 48 km/hr. The results 

showing the optimal bus configuration and the closest existing bus configuration are given in 

Table 4. 



 

 

Table 4. Optimal bus configuration for a desired acceleration value. 

 

Input  

No. 

Input  

Name 

Optimal Bus  

Configuration 

Closest Existing Bus 

Configuration 

1 Height (m) 2.87 2.87 

2 Wheelbase (m) 4.49 4.49 

3 Ground Clearance (m) 0.18 0.18 

4 Seated Load Weight – Total (kN) 60.74 60.63 

5 Axle Ratio 4.10 4.10 

6 Engine Power (kW) 137.9 138.0 

7 Engine Displacement (cm
3
) 7275 7275.9 

 

The closest bus configuration had an acceleration value of 1.0516 m/s
2
 at 48km/hr. Since the 

other changes are negligible, the result seems to show that the easiest way of achieving the 

desired acceleration value is to increase the Seated Load Weight on an existing bus by 0.11 kN. 

This seems reasonable. 

 

It should be noted that equation (16) can easily be modified to accommodate inputs values 

without normalization by using the mean input values given in Table 2 and adjusting c1 

accordingly.  At PTI, gradeability values are calculated from acceleration results. Hence one can 

calculate gradeability from the acceleration value predicted by the neural network model. 

Alternatively, if gradeability test results are available, one could use them to develop a separate 

model by following the procedure outlined in this paper. 

 

8.   CONCLUSIONS 

 

Good acceleration capability and gradeability are required for smooth flow of traffic and 

minimizing the number of accidents. However, measuring these values is cumbersome. This 

paper outlines a simulation model for acceleration performance of a transit bus. The model is 

based on Artificial Neural Network (ANN) and can easily be interpreted as an equation involving 

product units. This alleviates the common perception of an ANN being a black-box. A procedure 

for finding the design configuration (if it exists) of a transit bus that results in a desired 

acceleration performance is also discussed. The inversion model uses nonlinear programming to 

achieve this objective. 

 

It is hoped that both vehicle designers and regulatory authorities would find this method of 

analysis useful in their respective fields of designing better vehicles and drafting standards that 

are optimized to benefit the society.    
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